An inductive proof of Whitney's Broken Circuit Theorem
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 3, pp. 509-515.

Voir la notice de l'article provenant de la source Library of Science

We present a new proof of Whitney's broken circuit theorem based on induction on the number of edges and the deletion-contraction formula.
Keywords: chromatic polynomial, broken circuit, induction
@article{DMGT_2011_31_3_a6,
     author = {Dohmen, Klaus},
     title = {An inductive proof of {Whitney's} {Broken} {Circuit} {Theorem}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {509--515},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a6/}
}
TY  - JOUR
AU  - Dohmen, Klaus
TI  - An inductive proof of Whitney's Broken Circuit Theorem
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 509
EP  - 515
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a6/
LA  - en
ID  - DMGT_2011_31_3_a6
ER  - 
%0 Journal Article
%A Dohmen, Klaus
%T An inductive proof of Whitney's Broken Circuit Theorem
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 509-515
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a6/
%G en
%F DMGT_2011_31_3_a6
Dohmen, Klaus. An inductive proof of Whitney's Broken Circuit Theorem. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 3, pp. 509-515. http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a6/

[1] G.D. Birkhoff, A determinant formula for the number of ways of coloring a map, Ann. Math. 14 (1912) 42-46, doi: 10.2307/1967597.

[2] N. Biggs, Algebraic Graph Theory, 2nd edition, (Cambridge University Press, 1994).

[3] A. Blass and B.E. Sagan, Bijective proofs of two broken circuit theorems, J. Graph Theory 10 (1986) 15-21, doi: 10.1002/jgt.3190100104.

[4] K. Dohmen, An improvement of the inclusion-exclusion principle, Arch. Math. 72 (1999) 298-303, doi: 10.1007/s000130050336.

[5] R.C. Read, An introduction to chromatic polynomials, J. Combin. Theory 4 (1968) 52-71, doi: 10.1016/S0021-9800(68)80087-0.

[6] H. Whitney, A logical expansion in mathematics, Bull. Amer. Math. Soc. 38 (1932) 572-579, doi: 10.1090/S0002-9904-1932-05460-X.