An inductive proof of Whitney's Broken Circuit Theorem
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 3, pp. 509-515

Voir la notice de l'article provenant de la source Library of Science

We present a new proof of Whitney's broken circuit theorem based on induction on the number of edges and the deletion-contraction formula.
Keywords: chromatic polynomial, broken circuit, induction
@article{DMGT_2011_31_3_a6,
     author = {Dohmen, Klaus},
     title = {An inductive proof of {Whitney's} {Broken} {Circuit} {Theorem}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {509--515},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a6/}
}
TY  - JOUR
AU  - Dohmen, Klaus
TI  - An inductive proof of Whitney's Broken Circuit Theorem
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 509
EP  - 515
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a6/
LA  - en
ID  - DMGT_2011_31_3_a6
ER  - 
%0 Journal Article
%A Dohmen, Klaus
%T An inductive proof of Whitney's Broken Circuit Theorem
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 509-515
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a6/
%G en
%F DMGT_2011_31_3_a6
Dohmen, Klaus. An inductive proof of Whitney's Broken Circuit Theorem. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 3, pp. 509-515. http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a6/