An inductive proof of Whitney's Broken Circuit Theorem
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 3, pp. 509-515
Cet article a éte moissonné depuis la source Library of Science
We present a new proof of Whitney's broken circuit theorem based on induction on the number of edges and the deletion-contraction formula.
Keywords:
chromatic polynomial, broken circuit, induction
@article{DMGT_2011_31_3_a6,
author = {Dohmen, Klaus},
title = {An inductive proof of {Whitney's} {Broken} {Circuit} {Theorem}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {509--515},
year = {2011},
volume = {31},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a6/}
}
Dohmen, Klaus. An inductive proof of Whitney's Broken Circuit Theorem. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 3, pp. 509-515. http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a6/
[1] G.D. Birkhoff, A determinant formula for the number of ways of coloring a map, Ann. Math. 14 (1912) 42-46, doi: 10.2307/1967597.
[2] N. Biggs, Algebraic Graph Theory, 2nd edition, (Cambridge University Press, 1994).
[3] A. Blass and B.E. Sagan, Bijective proofs of two broken circuit theorems, J. Graph Theory 10 (1986) 15-21, doi: 10.1002/jgt.3190100104.
[4] K. Dohmen, An improvement of the inclusion-exclusion principle, Arch. Math. 72 (1999) 298-303, doi: 10.1007/s000130050336.
[5] R.C. Read, An introduction to chromatic polynomials, J. Combin. Theory 4 (1968) 52-71, doi: 10.1016/S0021-9800(68)80087-0.
[6] H. Whitney, A logical expansion in mathematics, Bull. Amer. Math. Soc. 38 (1932) 572-579, doi: 10.1090/S0002-9904-1932-05460-X.