Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2011_31_3_a11, author = {McKee, Terry}, title = {Simplicial and nonsimplicial complete subgraphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {577--586}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a11/} }
McKee, Terry. Simplicial and nonsimplicial complete subgraphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 3, pp. 577-586. http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a11/
[1] A. Brandstadt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey, Society for Industrial and Applied Mathematics (Philadelphia, 1999), doi: 10.1137/1.9780898719796.
[2] M.C. Dourado, F. Protti and J.L. Szwarcfiter, On the strong p-Helly property, Discrete Appl. Math. 156 (2008) 1053-1057, doi: 10.1016/j.dam.2007.05.047.
[3] M. Farber, Characterizations of strongly chordal graphs, Discrete Math. 43 (1983) 173-189, doi: 10.1016/0012-365X(83)90154-1.
[4] R.E. Jamison, On the null-homotopy of bridged graphs, European J. Combin. 8 (1987) 421-428.
[5] T.A. McKee, A new characterization of strongly chordal graphs, Discrete Math. 205 (1999) 245-247, doi: 10.1016/S0012-365X(99)00107-7.
[6] T.A. McKee, Requiring chords in cycles, Discrete Math. 297 (2005) 182-189, doi: 10.1016/j.disc.2005.04.009.
[7] T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory, Society for Industrial and Applied Mathematics (Philadelphia, 1999).
[8] E. Prisner, Hereditary clique-Helly graphs, J. Combin. Math. Combin. Comput. 14 (1993) 216-220.
[9] W.D. Wallis and G.-H. Zhang, On maximal clique irreducible graphs, J. Combin. Math. Combin. Comput. 8 (1993) 187-193.