Simplicial and nonsimplicial complete subgraphs
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 3, pp. 577-586.

Voir la notice de l'article provenant de la source Library of Science

Define a complete subgraph Q to be simplicial in a graph G when Q is contained in exactly one maximal complete subgraph ('maxclique') of G; otherwise, Q is nonsimplicial. Several graph classes-including strong p-Helly graphs and strongly chordal graphs-are shown to have pairs of peculiarly related new characterizations: (i) for every k ≤ 2, a certain property holds for the complete subgraphs that are in k or more maxcliques of G, and (ii) in every induced subgraph H of G, that same property holds for the nonsimplicial complete subgraphs of H.
Keywords: simplicial clique, strongly chordal graph, trivially perfect graph, hereditary clique-Helly graph, strong p-Helly graph
@article{DMGT_2011_31_3_a11,
     author = {McKee, Terry},
     title = {Simplicial and nonsimplicial complete subgraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {577--586},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a11/}
}
TY  - JOUR
AU  - McKee, Terry
TI  - Simplicial and nonsimplicial complete subgraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 577
EP  - 586
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a11/
LA  - en
ID  - DMGT_2011_31_3_a11
ER  - 
%0 Journal Article
%A McKee, Terry
%T Simplicial and nonsimplicial complete subgraphs
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 577-586
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a11/
%G en
%F DMGT_2011_31_3_a11
McKee, Terry. Simplicial and nonsimplicial complete subgraphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 3, pp. 577-586. http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a11/

[1] A. Brandstadt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey, Society for Industrial and Applied Mathematics (Philadelphia, 1999), doi: 10.1137/1.9780898719796.

[2] M.C. Dourado, F. Protti and J.L. Szwarcfiter, On the strong p-Helly property, Discrete Appl. Math. 156 (2008) 1053-1057, doi: 10.1016/j.dam.2007.05.047.

[3] M. Farber, Characterizations of strongly chordal graphs, Discrete Math. 43 (1983) 173-189, doi: 10.1016/0012-365X(83)90154-1.

[4] R.E. Jamison, On the null-homotopy of bridged graphs, European J. Combin. 8 (1987) 421-428.

[5] T.A. McKee, A new characterization of strongly chordal graphs, Discrete Math. 205 (1999) 245-247, doi: 10.1016/S0012-365X(99)00107-7.

[6] T.A. McKee, Requiring chords in cycles, Discrete Math. 297 (2005) 182-189, doi: 10.1016/j.disc.2005.04.009.

[7] T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory, Society for Industrial and Applied Mathematics (Philadelphia, 1999).

[8] E. Prisner, Hereditary clique-Helly graphs, J. Combin. Math. Combin. Comput. 14 (1993) 216-220.

[9] W.D. Wallis and G.-H. Zhang, On maximal clique irreducible graphs, J. Combin. Math. Combin. Comput. 8 (1993) 187-193.