On doubly light vertices in plane graphs
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 2, pp. 333-344.

Voir la notice de l'article provenant de la source Library of Science

A vertex is said to be doubly light in a family of plane graphs if its degree and sizes of neighbouring faces are bounded above by a finite constant. We provide several results on the existence of doubly light vertices in various families of plane graph.
Keywords: plane graph, doubly light vertex
@article{DMGT_2011_31_2_a9,
     author = {Koz\'akov\'a, Veronika and Madaras, Tom\'a\v{s}},
     title = {On doubly light vertices in plane graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {333--344},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a9/}
}
TY  - JOUR
AU  - Kozáková, Veronika
AU  - Madaras, Tomáš
TI  - On doubly light vertices in plane graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 333
EP  - 344
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a9/
LA  - en
ID  - DMGT_2011_31_2_a9
ER  - 
%0 Journal Article
%A Kozáková, Veronika
%A Madaras, Tomáš
%T On doubly light vertices in plane graphs
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 333-344
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a9/
%G en
%F DMGT_2011_31_2_a9
Kozáková, Veronika; Madaras, Tomáš. On doubly light vertices in plane graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 2, pp. 333-344. http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a9/

[1] O.V. Borodin, Solution of Kotzig-Grünbaum problems on separation of a cycle in planar graphs, Mat. Zametki 46 (1989) 9-12 (in Russian).

[2] O.V. Borodin, Sharpening Lebesgue's theorem on the structure of lowest faces of convex polytopes, Diskretn. Anal. Issled. Oper., Ser. 1 9, No. 3 (2002) 29-39 (in Russian).

[3] H. Lebesgue, Quelques consequences simples de la formule d'Euler, J. Math. Pures Appl. 19 (1940) 19-43.

[4] P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413-426, doi: 10.1007/BF01444968.

[5] R. Radoicic and G. Tóth, The discharging method in combinatorial geometry and the Pach-Sharir conjecture, Contemp. Math. 453 (2008) 319-342, doi: 10.1090/conm/453/08806.