The crossing numbers of join products of paths with graphs of order four
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 2, pp. 321-331.

Voir la notice de l'article provenant de la source Library of Science

Kulli and Muddebihal [V.R. Kulli, M.H. Muddebihal, Characterization of join graphs with crossing number zero, Far East J. Appl. Math. 5 (2001) 87-97] gave the characterization of all pairs of graphs which join product is planar graph. The crossing number cr(G) of a graph G is the minimal number of crossings over all drawings of G in the plane. There are only few results concerning crossing numbers of graphs obtained as join product of two graphs. In the paper, the exact values of crossing numbers for join of paths with all graphs of order four, as well as for join of all graphs of order four with n isolated vertices are given.
Keywords: graph, drawing, path, crossing number, join product
@article{DMGT_2011_31_2_a8,
     author = {Kle\v{s}\v{c}, Mari\'an and Schr\"otter, Stefan},
     title = {The crossing numbers of join products of paths with graphs of order four},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {321--331},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a8/}
}
TY  - JOUR
AU  - Klešč, Marián
AU  - Schrötter, Stefan
TI  - The crossing numbers of join products of paths with graphs of order four
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 321
EP  - 331
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a8/
LA  - en
ID  - DMGT_2011_31_2_a8
ER  - 
%0 Journal Article
%A Klešč, Marián
%A Schrötter, Stefan
%T The crossing numbers of join products of paths with graphs of order four
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 321-331
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a8/
%G en
%F DMGT_2011_31_2_a8
Klešč, Marián; Schrötter, Stefan. The crossing numbers of join products of paths with graphs of order four. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 2, pp. 321-331. http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a8/

[1] K. Asano, The crossing number of $K_{1,3,n}$ and $K_{2,3,n}$, J. Graph Theory 10 (1986) 1-8, doi: 10.1002/jgt.3190100102.

[2] L.W. Beineke and R.D. Ringeisen, On the crossing numbers of products of cycles and graphs of order four, J. Graph Theory 4 (1980) 145-155, doi: 10.1002/jgt.3190040203.

[3] D. Bokal, On the crossing numbers of Cartesian products with paths, J. Combin. Theory (B) 97 (2007) 381-384, doi: 10.1016/j.jctb.2006.06.003.

[4] M.R. Garey and D.S. Johnson, Crossing number is NP-complete, SIAM J. Algebraic. Discrete Methods 4 (1983) 312-316, doi: 10.1137/0604033.

[5] L.Y. Glebsky and G. Salazar, The crossing number of Cₘ ×Cₙ is as conjectured for n ≥; m(m+1), J. Graph Treory 47 (2004) 53-72, doi: 10.1002/jgt.20016.

[6] F. Harary, P.C. Kainen and A.J. Schwenk, Toroidal graphs with arbitrarily high crossing numbers, Nanta Math. 6 (1973) 58-67.

[7] S. Jendrol' and M. Scerbová, On the crossing numbers of Sₘ ×Pₙ and Sₘ ×Cₙ, Casopis pro pestování matematiky 107 (1982) 225-230.

[8] M. Klešč, The crossing numbers of Cartesian products of paths with 5-vertex graphs, Discrete Math. 233 (2001) 353-359, doi: 10.1016/S0012-365X(00)00251-X.

[9] M. Klešč, The join of graphs and crossing numbers, Electronic Notes in Discrete Math. 28 (2007) 349-355, doi: 10.1016/j.endm.2007.01.049.

[10] D.J. Kleitman, The crossing number of $K_{5,n}$, J. Combin. Theory (B) 9 (1971) 315-323.

[11] V.R. Kulli and M.H. Muddebihal, Characterization of join graphs with crossing number zero, Far East J. Appl. Math. 5 (2001) 87-97.

[12] K. Zarankiewicz, On a problem of P. Turán concerning graphs, Fund. Math. 41 (1954) 137-145.