Monochromatic cycles and monochromatic paths in arc-colored digraphs
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 2, pp. 283-292.

Voir la notice de l'article provenant de la source Library of Science

We call the digraph D an m-colored digraph if the arcs of D are colored with m colors. A path (or a cycle) is called monochromatic if all of its arcs are colored alike. A cycle is called a quasi-monochromatic cycle if with at most one exception all of its arcs are colored alike. A subdigraph H in D is called rainbow if all its arcs have different colors. A set N ⊆ V(D) is said to be a kernel by monochromatic paths if it satisfies the following two conditions: (i) for every pair of different vertices u,v ∈ N there is no monochromatic path between them and; (ii) for every vertex x ∈ V(D)-N there is a vertex y ∈ N such that there is an xy-monochromatic path. The closure of D, denoted by ℭ(D), is the m-colored multidigraph defined as follows: V(ℭ(D)) = V(D), A(ℭ(D)) = A(D)∪(u,v) with color i | there exists a uv-monochromatic path colored i contained in D. Notice that for any digraph D, ℭ (ℭ(D)) ≅ ℭ(D) and D has a kernel by monochromatic paths if and only if ℭ(D) has a kernel.
Keywords: kernel, kernel by monochromatic paths, monochromatic cycles
@article{DMGT_2011_31_2_a5,
     author = {Galeana-S\'anchez, Hortensia and Gayt\'an-G\'omez, Guadalupe and Rojas-Monroy, Roc{\'\i}o},
     title = {Monochromatic cycles and monochromatic paths in arc-colored digraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {283--292},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a5/}
}
TY  - JOUR
AU  - Galeana-Sánchez, Hortensia
AU  - Gaytán-Gómez, Guadalupe
AU  - Rojas-Monroy, Rocío
TI  - Monochromatic cycles and monochromatic paths in arc-colored digraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 283
EP  - 292
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a5/
LA  - en
ID  - DMGT_2011_31_2_a5
ER  - 
%0 Journal Article
%A Galeana-Sánchez, Hortensia
%A Gaytán-Gómez, Guadalupe
%A Rojas-Monroy, Rocío
%T Monochromatic cycles and monochromatic paths in arc-colored digraphs
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 283-292
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a5/
%G en
%F DMGT_2011_31_2_a5
Galeana-Sánchez, Hortensia; Gaytán-Gómez, Guadalupe; Rojas-Monroy, Rocío. Monochromatic cycles and monochromatic paths in arc-colored digraphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 2, pp. 283-292. http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a5/

[1] C. Berge, Graphs (North-Holland, Amsterdam, 1985).

[2] P. Duchet, Graphes Noyau - Parfaits, Ann. Discrete Math. 9 (1980) 93-101, doi: 10.1016/S0167-5060(08)70041-4.

[3] P. Duchet, Classical Perfect Graphs, An introduction with emphasis on triangulated and interval graphs, Ann. Discrete Math. 21 (1984) 67-96.

[4] P. Duchet and H. Meyniel, A note on kernel-critical graphs, Discrete Math. 33 (1981) 103-105, doi: 10.1016/0012-365X(81)90264-8.

[5] H. Galeana-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67-76, doi: 10.1016/0012-365X(84)90131-6.

[6] H. Galeana-Sánchez and V. Neumann-Lara, On kernel-perfect critical digraphs, Discrete Math. 59 (1986) 257-265, doi: 10.1016/0012-365X(86)90172-X.

[7] H. Galeana-Sánchez, On monochromatic paths and monochromatics cycles in edge coloured tournaments, Discrete Math. 156 (1996) 103-112, doi: 10.1016/0012-365X(95)00036-V.

[8] H. Galeana-Sánchez, Kernels in edge-coloured digraphs, Discrete Math. 184 (1998) 87-99, doi: 10.1016/S0012-365X(97)00162-3.

[9] H. Galeana-Sánchez and J.J. Garcia-Ruvalcaba, Kernels in the closure of coloured digraphs, Discuss. Math. Graph Theory 20 (2000) 243-254, doi: 10.7151/dmgt.1123.

[10] H. Galeana-Sánchez and R. Rojas-Monroy, A counterexample to a conjecture on edge-coloured tournaments, Discrete Math. 282 (2004) 275-276, doi: 10.1016/j.disc.2003.11.015.

[11] S. Minggang, On monochromatic paths in m-coloured tournaments, J. Combin. Theory (B) 45 (1988) 108-111, doi: 10.1016/0095-8956(88)90059-7.

[12] B. Sands, N. Sauer and R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin. Theory (B) 33 (1982) 271-275, doi: 10.1016/0095-8956(82)90047-8.

[13] I. Włoch, On kernels by monochromatic paths in the corona of digraphs, Cent. Eur. J. Math. 6 (2008) 537-542, doi: 10.2478/s11533-008-0044-6.

[14] I. Włoch, On imp-sets and kernels by monochromatic paths in duplication, Ars Combin. 83 (2007) 93-99.