Distance independence in graphs
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 2, pp. 397-409.

Voir la notice de l'article provenant de la source Library of Science

For a set D of positive integers, we define a vertex set S ⊆ V(G) to be D-independent if u, v ∈ S implies the distance d(u,v) ∉ D. The D-independence number β_D(G) is the maximum cardinality of a D-independent set. In particular, the independence number β(G) = β_1(G). Along with general results we consider, in particular, the odd-independence number β_ODD(G) where ODD = 1,3,5,....
Keywords: independence number, distance set
@article{DMGT_2011_31_2_a14,
     author = {Sewell, J. and Slater, Peter},
     title = {Distance independence in graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {397--409},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a14/}
}
TY  - JOUR
AU  - Sewell, J.
AU  - Slater, Peter
TI  - Distance independence in graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 397
EP  - 409
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a14/
LA  - en
ID  - DMGT_2011_31_2_a14
ER  - 
%0 Journal Article
%A Sewell, J.
%A Slater, Peter
%T Distance independence in graphs
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 397-409
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a14/
%G en
%F DMGT_2011_31_2_a14
Sewell, J.; Slater, Peter. Distance independence in graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 2, pp. 397-409. http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a14/

[1] E.J. Cockayne, S.T. Hedetniemi, and D.J. Miller, Properties of hereditary hypergraphs and middle graphs, Canad. Math. Bull. 21 (1978) 461-468, doi: 10.4153/CMB-1978-079-5.

[2] T. Gallai, Über extreme Punkt-und Kantenmengen, Ann. Univ. Sci. Budapest, Eotvos Sect. Math. 2 (1959) 133-138.

[3] T.W. Haynes and P.J. Slater, Paired domination in graphs, Networks 32 (1998) 199-206, doi: 10.1002/(SICI)1097-0037(199810)32:3199::AID-NET4>3.0.CO;2-F

[4] J.D. McFall and R. Nowakowski, Strong indepedence in graphs, Congr. Numer. 29 (1980) 639-656.

[5] J.L. Sewell, Distance Generalizations of Graphical Parameters, (Univ. Alabama in Huntsville, 2011).

[6] A. Sinko and P.J. Slater, Generalized graph parametric chains, submitted for publication.

[7] A. Sinko and P.J. Slater, R-parametric and R-chromatic problems, submitted for publication.

[8] P.J. Slater, Enclaveless sets and MK-systems, J. Res. Nat. Bur. Stan. 82 (1977) 197-202.

[9] P.J. Slater, Generalized graph parametric chains, in: Combinatorics, Graph Theory and Algorithms (New Issues Press, Western Michigan University 1999) 787-797.

[10] T.W. Haynes, M.A. Henning and P.J. Slater, Strong equality of upper domination and independence in trees, Util. Math. 59 (2001) 111-124.

[11] T.W. Haynes, M.A. Henning and P.J. Slater, Strong equality of domination parameters in trees, Discrete Math. 260 (2003) 77-87, doi: 10.1016/S0012-365X(02)00451-X.

[12] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, LP-duality, complementarity and generality of graphical subset problems, in: Domination in Graphs Advanced Topics, T.W. Haynes et al. (eds) (Marcel-Dekker, Inc. 1998) 1-30.