Distance independence in graphs
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 2, pp. 397-409

Voir la notice de l'article provenant de la source Library of Science

For a set D of positive integers, we define a vertex set S ⊆ V(G) to be D-independent if u, v ∈ S implies the distance d(u,v) ∉ D. The D-independence number β_D(G) is the maximum cardinality of a D-independent set. In particular, the independence number β(G) = β_1(G). Along with general results we consider, in particular, the odd-independence number β_ODD(G) where ODD = 1,3,5,....
Keywords: independence number, distance set
@article{DMGT_2011_31_2_a14,
     author = {Sewell, J. and Slater, Peter},
     title = {Distance independence in graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {397--409},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a14/}
}
TY  - JOUR
AU  - Sewell, J.
AU  - Slater, Peter
TI  - Distance independence in graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 397
EP  - 409
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a14/
LA  - en
ID  - DMGT_2011_31_2_a14
ER  - 
%0 Journal Article
%A Sewell, J.
%A Slater, Peter
%T Distance independence in graphs
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 397-409
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a14/
%G en
%F DMGT_2011_31_2_a14
Sewell, J.; Slater, Peter. Distance independence in graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 2, pp. 397-409. http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a14/