Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2011_31_2_a14, author = {Sewell, J. and Slater, Peter}, title = {Distance independence in graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {397--409}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a14/} }
Sewell, J.; Slater, Peter. Distance independence in graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 2, pp. 397-409. http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a14/
[1] E.J. Cockayne, S.T. Hedetniemi, and D.J. Miller, Properties of hereditary hypergraphs and middle graphs, Canad. Math. Bull. 21 (1978) 461-468, doi: 10.4153/CMB-1978-079-5.
[2] T. Gallai, Über extreme Punkt-und Kantenmengen, Ann. Univ. Sci. Budapest, Eotvos Sect. Math. 2 (1959) 133-138.
[3] T.W. Haynes and P.J. Slater, Paired domination in graphs, Networks 32 (1998) 199-206, doi: 10.1002/(SICI)1097-0037(199810)32:3199::AID-NET4>3.0.CO;2-F
[4] J.D. McFall and R. Nowakowski, Strong indepedence in graphs, Congr. Numer. 29 (1980) 639-656.
[5] J.L. Sewell, Distance Generalizations of Graphical Parameters, (Univ. Alabama in Huntsville, 2011).
[6] A. Sinko and P.J. Slater, Generalized graph parametric chains, submitted for publication.
[7] A. Sinko and P.J. Slater, R-parametric and R-chromatic problems, submitted for publication.
[8] P.J. Slater, Enclaveless sets and MK-systems, J. Res. Nat. Bur. Stan. 82 (1977) 197-202.
[9] P.J. Slater, Generalized graph parametric chains, in: Combinatorics, Graph Theory and Algorithms (New Issues Press, Western Michigan University 1999) 787-797.
[10] T.W. Haynes, M.A. Henning and P.J. Slater, Strong equality of upper domination and independence in trees, Util. Math. 59 (2001) 111-124.
[11] T.W. Haynes, M.A. Henning and P.J. Slater, Strong equality of domination parameters in trees, Discrete Math. 260 (2003) 77-87, doi: 10.1016/S0012-365X(02)00451-X.
[12] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, LP-duality, complementarity and generality of graphical subset problems, in: Domination in Graphs Advanced Topics, T.W. Haynes et al. (eds) (Marcel-Dekker, Inc. 1998) 1-30.