Color-bounded hypergraphs, V: host graphs and subdivisions
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 2, pp. 223-238.

Voir la notice de l'article provenant de la source Library of Science

A color-bounded hypergraph is a hypergraph (set system) with vertex set X and edge set = E₁,...,Eₘ, together with integers s_i and t_i satisfying 1 ≤ s_i ≤ t_i ≤ |E_i| for each i = 1,...,m. A vertex coloring φ is proper if for every i, the number of colors occurring in edge E_i satisfies s_i ≤ |φ(E_i)| ≤ t_i. The hypergraph ℋ is colorable if it admits at least one proper coloring.
Keywords: mixed hypergraph, color-bounded hypergraph, vertex coloring, arboreal hypergraph, hypertree, feasible set, host graph, edge subdivision
@article{DMGT_2011_31_2_a1,
     author = {Bujt\'as, Csilla and Tuza, Zsolt and Voloshin, Vitaly},
     title = {Color-bounded hypergraphs, {V:} host graphs and subdivisions},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {223--238},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a1/}
}
TY  - JOUR
AU  - Bujtás, Csilla
AU  - Tuza, Zsolt
AU  - Voloshin, Vitaly
TI  - Color-bounded hypergraphs, V: host graphs and subdivisions
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 223
EP  - 238
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a1/
LA  - en
ID  - DMGT_2011_31_2_a1
ER  - 
%0 Journal Article
%A Bujtás, Csilla
%A Tuza, Zsolt
%A Voloshin, Vitaly
%T Color-bounded hypergraphs, V: host graphs and subdivisions
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 223-238
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a1/
%G en
%F DMGT_2011_31_2_a1
Bujtás, Csilla; Tuza, Zsolt; Voloshin, Vitaly. Color-bounded hypergraphs, V: host graphs and subdivisions. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 2, pp. 223-238. http://geodesic.mathdoc.fr/item/DMGT_2011_31_2_a1/

[1] Cs. Bujtás and Zs. Tuza, Mixed colorings of hypergraphs, Electronic Notes in Discrete Math. 24 (2006) 273-275, doi: 10.1016/j.endm.2006.06.026.

[2] Cs. Bujtás and Zs. Tuza, Uniform mixed hypergraphs: The possible numbers of colors, Graphs and Combinatorics 24 (2008) 1-12, doi: 10.1007/s00373-007-0765-5.

[3] Cs. Bujtás and Zs. Tuza, Color-bounded hypergraphs, I: General results, Discrete Math. 309 (2009) 4890-4902, doi: 10.1016/j.disc.2008.04.019.

[4] Cs. Bujtás and Zs. Tuza, Color-bounded hypergraphs, II: Interval hypergraphs and hypertrees, Discrete Math. 309 (2009) 6391-6401, doi: 10.1016/j.disc.2008.10.023.

[5] Cs. Bujtás and Zs. Tuza, Color-bounded hypergraphs, III: Model comparison, Appl. Anal. and Discrete Math. 1 (2007) 36-55.

[6] Cs. Bujtás and Zs. Tuza, Color-bounded hypergraphs, IV: Stable colorings of hypertrees, Discrete Math. 310 (2010) 1463-1474, doi: 10.1016/j.disc.2009.07.014.

[7] Cs. Bujtás and Zs. Tuza, Coloring intervals with four types of constraints, in: 6th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications, A. Frank et al., Eds. (Budapest, Hungary, May 16-19, 2009) 393-401.

[8] E. Drgas-Burchardt and E. Łazuka, On chromatic polynomials of hypergraphs, Appl. Math. Letters 20 (2007) 1250-1254, doi: 10.1016/j.aml.2007.02.006.

[9] T. Jiang, D. Mubayi, Zs. Tuza, V.I. Voloshin and D. West, The chromatic spectrum of mixed hypergraphs, Graphs and Combinatorics 18 (2002) 309-318, doi: 10.1007/s003730200023.

[10] D. Král', J. Kratochví l, A. Proskurowski and H.-J. Voss, Coloring mixed hypertrees, in: 26th Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science 1928 (Springer-Verlag, 2000) 279-289.

[11] D. Král, J. Kratochvíl, and H.-J. Voss, Mixed hypercacti, Discrete Math. 286 (2004) 99-113, doi: 10.1016/j.disc.2003.11.051.

[12] Zs. Tuza and V. Voloshin, Uncolorable mixed hypergraphs, Discrete Appl. Math. 99 (2000) 209-227, doi: 10.1016/S0166-218X(99)00134-1.

[13] Zs. Tuza and V. Voloshin, Problems and results on colorings of mixed hypergraphs, Horizon of Combinatorics (E. Gyori et al., Eds.), Bolyai Society Mathematical Studies 17 (Springer-Verlag, 2008) 235-255.

[14] V. Voloshin, The mixed hypergraphs, Computer Science Journal of Moldova 1 (1993) 45-52.

[15] V. Voloshin, On the upper chromatic number of a hypergraph, Australasian J. Combin. 11 (1995) 25-45.

[16] V.I. Voloshin, Coloring Mixed Hypergraphs: Theory, Algorithms and Applications, Fields Institute Monographs 17 Amer. Math. Soc., 2002.