Coloring rectangular blocks in 3-space
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 1, pp. 161-170.

Voir la notice de l'article provenant de la source Library of Science

If rooms in an office building are allowed to be any rectangular solid, how many colors does it take to paint any configuration of rooms so that no two rooms sharing a wall or ceiling/floor get the same color? In this work, we provide a new construction which shows this number can be arbitrarily large.
Keywords: chromatic number, channel assignment problem, 3 dimensional rectangular blocks
@article{DMGT_2011_31_1_a8,
     author = {Magnant, Colton and Martin, Daniel},
     title = {Coloring rectangular blocks in 3-space},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {161--170},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a8/}
}
TY  - JOUR
AU  - Magnant, Colton
AU  - Martin, Daniel
TI  - Coloring rectangular blocks in 3-space
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 161
EP  - 170
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a8/
LA  - en
ID  - DMGT_2011_31_1_a8
ER  - 
%0 Journal Article
%A Magnant, Colton
%A Martin, Daniel
%T Coloring rectangular blocks in 3-space
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 161-170
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a8/
%G en
%F DMGT_2011_31_1_a8
Magnant, Colton; Martin, Daniel. Coloring rectangular blocks in 3-space. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 1, pp. 161-170. http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a8/

[1] J.P. Burling, On coloring problems of families of prototypes, Ph.D. Thesis - University of Colorado, 1, (1965)

[2] T.R. Jensen and B. Toft, Graph coloring problems, Wiley-Interscience Series in Discrete Mathematics and Optimization (John Wiley Sons Inc., New York, 1995). A Wiley-Interscience Publication.

[3] A.V. Kostochka and J. Nesetril, Properties of Descartes' construction of triangle-free graphs with high chromatic number, Combin. Probab. Comput. 8 (1999) 467-472, doi: 10.1017/S0963548399004022.

[4] B. Reed and D. Allwright, Painting the office, MICS Journal 1 (2008) 1-8.