Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2011_31_1_a6, author = {Clark, Lane and Johnson, Darin}, title = {The independent domination number of a random graph}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {129--142}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a6/} }
Clark, Lane; Johnson, Darin. The independent domination number of a random graph. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 1, pp. 129-142. http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a6/
[1] N. Alon and J. Spencer, The Probabilistic Method (John Wiley, New York, 1992).
[2] B. Bollobás, Random Graphs (Second Edition, Cambridge University Press, New York, 2001).
[3] A. Bonato and C. Wang, A note on domination parameters in random graphs, Discuss. Math. Graph Theory 28 (2008) 307-322, doi: 10.7151/dmgt.1409.
[4] A. Godbole and B. Wieland, On the domination number of a Random graph, Electronic J. Combin. 8 (2001) 1-13.
[5] T. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
[6] T. Haynes, S. Hedetniemi and P. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., New York, 1998).
[7] K. Weber, Domination number for almost every graph, Rostocker Matematisches Kolloquium 16 (1981) 31-43.