The independent domination number of a random graph
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 1, pp. 129-142

Voir la notice de l'article provenant de la source Library of Science

We prove a two-point concentration for the independent domination number of the random graph G_n,p provided p²ln(n) ≥ 64ln((lnn)/p).
Keywords: random graph, two-point concentration, independent domination
@article{DMGT_2011_31_1_a6,
     author = {Clark, Lane and Johnson, Darin},
     title = {The independent domination number of a random graph},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {129--142},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a6/}
}
TY  - JOUR
AU  - Clark, Lane
AU  - Johnson, Darin
TI  - The independent domination number of a random graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 129
EP  - 142
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a6/
LA  - en
ID  - DMGT_2011_31_1_a6
ER  - 
%0 Journal Article
%A Clark, Lane
%A Johnson, Darin
%T The independent domination number of a random graph
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 129-142
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a6/
%G en
%F DMGT_2011_31_1_a6
Clark, Lane; Johnson, Darin. The independent domination number of a random graph. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 1, pp. 129-142. http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a6/