A magical approach to some labeling conjectures
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 1, pp. 79-113.

Voir la notice de l'article provenant de la source Library of Science

In this paper, a complete characterization of the (super) edge-magic linear forests with two components is provided. In the process of establishing this characterization, the super edge-magic, harmonious, sequential and felicitous properties of certain 2-regular graphs are investigated, and several results on super edge-magic and felicitous labelings of unions of cycles and paths are presented. These labelings resolve one conjecture on harmonious graphs as a corollary, and make headway towards the resolution of others. They also provide the basis for some new conjectures (and a weaker form of an old one) on labelings of 2-regular graphs.
Keywords: edge-magic labelling, edge-magic total labelling, felicitous labelling, harmonious labelling, sequential labelling
@article{DMGT_2011_31_1_a5,
     author = {Figueroa-Centeno, Ramon and Ichishima, Rikio and Muntaner-Batle, Francesc and Oshima, Akito},
     title = {A magical approach to some labeling conjectures},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {79--113},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a5/}
}
TY  - JOUR
AU  - Figueroa-Centeno, Ramon
AU  - Ichishima, Rikio
AU  - Muntaner-Batle, Francesc
AU  - Oshima, Akito
TI  - A magical approach to some labeling conjectures
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 79
EP  - 113
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a5/
LA  - en
ID  - DMGT_2011_31_1_a5
ER  - 
%0 Journal Article
%A Figueroa-Centeno, Ramon
%A Ichishima, Rikio
%A Muntaner-Batle, Francesc
%A Oshima, Akito
%T A magical approach to some labeling conjectures
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 79-113
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a5/
%G en
%F DMGT_2011_31_1_a5
Figueroa-Centeno, Ramon; Ichishima, Rikio; Muntaner-Batle, Francesc; Oshima, Akito. A magical approach to some labeling conjectures. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 1, pp. 79-113. http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a5/

[1] J. Abrham and A. Kotzig, Graceful valuations of 2-regular graphs with two components, Discrete Math. 150 (1996) 3-15, doi: 10.1016/0012-365X(95)00171-R.

[2] G. Chartrand and L. Lesniak, Graphs and Digraphs (Wadsworth Brook/Cole Advanced Books and Software, Monterey, Calif. 1986).

[3] H. Enomoto, A. Lladó, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998) 105-109.

[4] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, The place of super edge-magic labelings among other classes of labelings, Discrete Math. 231 (2001) 153-168, doi: 10.1016/S0012-365X(00)00314-9.

[5] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, On super edge-magic graphs, Ars Combin. 64 (2002) 81-96.

[6] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, Labeling the vertex amalgamation of graphs, Discuss. Math. Graph Theory 23 (2003) 129-139, doi: 10.7151/dmgt.1190.

[7] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, On edge-magic labelings of certain disjoint unions of graphs, Austral. J. Combin. 32 (2005) 225-242.

[8] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, On the super edge-magic deficiency of graphs, Ars Combin. 78 (2006) 33-45.

[9] R.M. Figueroa-Centeno, R. Ichishima, F.A. Muntaner-Batle and M. Rius-Font, Labeling generating matrices, J. Combin. Math. Combin. Comput. 67 (2008) 189-216.

[10] R. Frucht and L.C. Salinas, Graceful numbering of snakes with constraints on the first label, Ars Combin. (B) 20 (1985) 143-157.

[11] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 5 (2009) #DS6.

[12] S.W. Golomb, How to number a graph, in: Graph Theory and Computing, R.C. Read, ed. (Academic Press, New York, 1972) 23-37.

[13] T. Grace, On sequential labelings of graphs, J. Graph Theory 7 (1983) 195-201, doi: 10.1002/jgt.3190070208.

[14] R.L. Graham and N.J. Sloane, On additive bases and harmonious graphs, SIAM J. Alg. Discrete Meth. 1 (1980) 382-404, doi: 10.1137/0601045.

[15] I. Gray and J.A. MacDougall, Vertex-magic labelings of regular graphs II, Discrete Math. 309 (2009) 5986-5999, doi: 10.1016/j.disc.2009.04.031.

[16] J. Holden, D. McQuillan and J.M. McQuillan, A conjecture on strong magic labelings of 2-regular graphs, Discrete Math. 309 (2009) 4130-4136, doi: 10.1016/j.disc.2008.12.020.

[17] A. Kotzig, β-valuations of quadratic graphs with isomorphic components, Utilitas Math. 7 (1975) 263-279.

[18] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970) 451-461, doi: 10.4153/CMB-1970-084-1.

[19] S.M. Lee, E. Schmeichel and S.C. Shee, On felicitous graphs, Discrete Math. 93 (1991) 201-209, doi: 10.1016/0012-365X(91)90256-2.

[20] M. Seoud, A.E.I. Abdel Maqsoud and J. Sheehan, Harmonious graphs, Utilitas Math. 47 (1995) 225-233.

[21] S.C. Shee, On harmonious and related graphs, Ars Combin. 23 (1987) 237-247.

[22] S.C. Shee and S.M. Lee, On harmonious and felicitous labelings of graphs, Congress Numer. 68 (1989) 155-170.

[23] G. Ringel and A. Lladó, Another tree conjecture, Bull. Inst. Combin. Appl. 18 (1996) 83-85.

[24] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N.Y and Dunod Paris (1967) 349-355.

[25] W.D. Wallis, Magic Graphs (Birkhäuser, Boston, 2001), doi: 10.1007/978-1-4612-0123-6.