Cyclically k-partite digraphs and k-kernels
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 1, pp. 63-78.

Voir la notice de l'article provenant de la source Library of Science

Let D be a digraph, V(D) and A(D) will denote the sets of vertices and arcs of D, respectively.
Keywords: digraph, kernel, (k,l)-kernel, k-kernel, cyclically k-partite
@article{DMGT_2011_31_1_a4,
     author = {Galeana-S\'anchez, Hortensia and Hern\'andez-Cruz, C\'esar},
     title = {Cyclically k-partite digraphs and k-kernels},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {63--78},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a4/}
}
TY  - JOUR
AU  - Galeana-Sánchez, Hortensia
AU  - Hernández-Cruz, César
TI  - Cyclically k-partite digraphs and k-kernels
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 63
EP  - 78
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a4/
LA  - en
ID  - DMGT_2011_31_1_a4
ER  - 
%0 Journal Article
%A Galeana-Sánchez, Hortensia
%A Hernández-Cruz, César
%T Cyclically k-partite digraphs and k-kernels
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 63-78
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a4/
%G en
%F DMGT_2011_31_1_a4
Galeana-Sánchez, Hortensia; Hernández-Cruz, César. Cyclically k-partite digraphs and k-kernels. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 1, pp. 63-78. http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a4/

[1] J. Bang-Jensen and G. Gutin, Digraphs. Theory, Algorithms and Applications (Springer-Verlag, 2002).

[2] C. Berge, Graphs (North-Holland, Amsterdam, New York, 1985).

[3] C. Berge and P. Duchet, Recent problems and results about kernels in directed graphs, Discrete Math. 86 (1990) 27-31, doi: 10.1016/0012-365X(90)90346-J.

[4] R.A. Brualdi and H.J. Ryser, Combinatorial Matrix Theory (Encyclopedia of Mathematics and its Applications) (Cambridge University Press, 1991).

[5] R. Diestel, Graph Theory 3rd Edition (Springer-Verlag, Heidelberg, New York, 2005).

[6] H. Galeana-Sánchez, On the existence of kernels and h-kernels in directed graphs, Discrete Math. 110 (1992) 251-255, doi: 10.1016/0012-365X(92)90713-P.

[7] M. Kucharska and M. Kwaśnik, On (k,l)-kernels of special superdigraphs of Pₘ and Cₘ, Discuss. Math. Graph Theory 21 (2001) 95-109, doi: 10.7151/dmgt.1135.

[8] M. Kwaśnik, On (k,l)-kernels on graphs and their products, Doctoral dissertation, Technical University of Wroc aw, Wroc aw, 1980.

[9] M. Kwaśnik, The generalizaton of Richardson's theorem, Discuss. Math. 4 (1981) 11-14.

[10] M. Richardson, On weakly ordered systems, Bull. Amer. Math. Soc. 52 (1946) 113-116, doi: 10.1090/S0002-9904-1946-08518-3.

[11] A. Sánchez-Flores, A counterexample to a generalization of Richardson's theorem, Discrete Math. 65 (1987) 319-320.

[12] W. Szumny, A. Włoch and I. Włoch, On (k,l)-kernels in D-join of digraphs, Discuss. Math. Graph Theory 27 (2007) 457-470, doi: 10.7151/dmgt.1373.

[13] W. Szumny, A. Włoch and I. Włoch, On the existence and on the number of (k,l)-kernels in the lexicographic product of graphs, Discrete Math. 308 (2008) 4616-4624, doi: 10.1016/j.disc.2007.08.078.

[14] J. Von Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1953).

[15] A. Włoch and I. Włoch, On (k,l)-kernels in generalized products, Discrete Math. 164 (1997) 295-301, doi: 10.1016/S0012-365X(96)00064-7.