Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2011_31_1_a10, author = {Santhakumaran, A. and John, J.}, title = {The forcing steiner number of a graph}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {171--181}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a10/} }
Santhakumaran, A.; John, J. The forcing steiner number of a graph. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 1, pp. 171-181. http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a10/
[1] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Redwood City, CA, 1990).
[2] G. Chartrand and P. Zhang, The forcing geodetic number of a graph, Discuss. Math. Graph Theory 19 (1999) 45-58, doi: 10.7151/dmgt.1084.
[3] G. Chartrand and P. Zhang, The forcing dimension of a graph, Mathematica Bohemica 126 (2001) 711-720.
[4] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks 39 (2002) 1-6, doi: 10.1002/net.10007.
[5] G. Chartrand, F. Harary and P. Zhang, The Steiner Number of a Graph, Discrete Math. 242 (2002) 41-54.
[6] F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Math. Comput. Modelling 17 (1993) 89-95, doi: 10.1016/0895-7177(93)90259-2.
[7] C. Hernando, T. Jiang, M. Mora, I.M. Pelayo and C. Seara, On the Steiner, geodetic and hull numbers of graphs, Discrete Math. 293 (2005) 139-154, doi: 10.1016/j.disc.2004.08.039.
[8] I.M. Pelayo, Comment on 'The Steiner number of a graph' by G. Chartrand and P. Zhang, Discrete Math. 242 (2002) 41-54.
[9] A.P. Santhakumaran, P. Titus and J. John, On the Connected Geodetic Number of a Graph, J. Combin. Math. Combin. Comput. 69 (2009) 205-218.
[10] A.P. Santhakumaran, P. Titus and J. John, The Upper Connected Geodetic Number and Forcing Connected Geodetic Number of a Graph, Discrete Appl. Math. 157 (2009) 1571-1580, doi: 10.1016/j.dam.2008.06.005.