The forcing steiner number of a graph
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 1, pp. 171-181

Voir la notice de l'article provenant de la source Library of Science

For a connected graph G = (V,E), a set W ⊆ V is called a Steiner set of G if every vertex of G is contained in a Steiner W-tree of G. The Steiner number s(G) of G is the minimum cardinality of its Steiner sets and any Steiner set of cardinality s(G) is a minimum Steiner set of G. For a minimum Steiner set W of G, a subset T ⊆ W is called a forcing subset for W if W is the unique minimum Steiner set containing T. A forcing subset for W of minimum cardinality is a minimum forcing subset of W. The forcing Steiner number of W, denoted by fₛ(W), is the cardinality of a minimum forcing subset of W. The forcing Steiner number of G, denoted by fₛ(G), is fₛ(G) = minfₛ(W), where the minimum is taken over all minimum Steiner sets W in G. Some general properties satisfied by this concept are studied. The forcing Steiner numbers of certain classes of graphs are determined. It is shown for every pair a, b of integers with 0 ≤ a b, b ≥ 2, there exists a connected graph G such that fₛ(G) = a and s(G) = b.
Keywords: geodetic number, Steiner number, forcing geodetic number, forcing Steiner number
@article{DMGT_2011_31_1_a10,
     author = {Santhakumaran, A. and John, J.},
     title = {The forcing steiner number of a graph},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {171--181},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a10/}
}
TY  - JOUR
AU  - Santhakumaran, A.
AU  - John, J.
TI  - The forcing steiner number of a graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 171
EP  - 181
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a10/
LA  - en
ID  - DMGT_2011_31_1_a10
ER  - 
%0 Journal Article
%A Santhakumaran, A.
%A John, J.
%T The forcing steiner number of a graph
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 171-181
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a10/
%G en
%F DMGT_2011_31_1_a10
Santhakumaran, A.; John, J. The forcing steiner number of a graph. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 1, pp. 171-181. http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a10/