Paired domination in prisms of graphs
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 1, pp. 5-23.

Voir la notice de l'article provenant de la source Library of Science

The paired domination number γ_pr(G) of a graph G is the smallest cardinality of a dominating set S of G such that 〈S〉 has a perfect matching. The generalized prisms πG of G are the graphs obtained by joining the vertices of two disjoint copies of G by |V(G)| independent edges. We provide characterizations of the following three classes of graphs: γ_pr(πG) = 2γ_pr(G) for all πG; γ_pr(K₂☐ G) = 2γ_pr(G); γ_pr(K₂☐ G) = γ_pr(G).
Keywords: domination, paired domination, prism of a graph, Cartesian product
@article{DMGT_2011_31_1_a0,
     author = {Mynhardt, Christina and Schurch, Mark},
     title = {Paired domination in prisms of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {5--23},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a0/}
}
TY  - JOUR
AU  - Mynhardt, Christina
AU  - Schurch, Mark
TI  - Paired domination in prisms of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 5
EP  - 23
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a0/
LA  - en
ID  - DMGT_2011_31_1_a0
ER  - 
%0 Journal Article
%A Mynhardt, Christina
%A Schurch, Mark
%T Paired domination in prisms of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 5-23
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a0/
%G en
%F DMGT_2011_31_1_a0
Mynhardt, Christina; Schurch, Mark. Paired domination in prisms of graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 1, pp. 5-23. http://geodesic.mathdoc.fr/item/DMGT_2011_31_1_a0/

[1] B. Bresar, M.A. Henning and D.F. Rall, Paired-domination of Cartesian products of graphs, Util. Math. 73 (2007) 255-265.

[2] A.P. Burger and C.M. Mynhardt, Regular graphs are not universal fixers, Discrete Math. 310 (2010) 364-368, doi: 10.1016/j.disc.2008.09.016.

[3] A.P. Burger, C.M. Mynhardt and W.D. Weakley, On the domination number of prisms of graphs, Discuss. Math. Graph Theory 24 (2004) 303-318, doi: 10.7151/dmgt.1233.

[4] E.J. Cockayne, R.G. Gibson and C.M. Mynhardt, Claw-free graphs are not universal fixers, Discrete Math. 309 (2009) 128-133, doi: 10.1016/j.disc.2007.12.053.

[5] M. Edwards, R.G. Gibson, M.A. Henning and C.M. Mynhardt, On paired-domination edge critical graphs, Australasian J. Combin. 40 (2008) 279-292.

[6] R.G. Gibson, Bipartite graphs are not universal fixers, Discrete Math. 308 (2008) 5937-5943, doi: 10.1016/j.disc.2007.11.006.

[7] B.L. Hartnell and D.F. Rall, On Vizing's conjecture, Congr. Numer. 82 (1991) 87-96.

[8] B.L. Hartnell and D.F. Rall, On dominating the Cartesian product of a graph and K₂, Discuss. Math. Graph Theory 24 (2004) 389-402, doi: 10.7151/dmgt.1238.

[9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[10] C.M. Mynhardt and Z. Xu, Domination in prisms of graphs: Universal fixers, Utilitas Math. 78 (2009) 185-201.

[11] M. Schurch, Domination Parameters for Prisms of Graphs (Master's thesis, University of Victoria, 2005).