Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2010_30_4_a7, author = {Agnarsson, Geir and Halld\'orsson, Magn\'us}, title = {Vertex coloring the square of outerplanar graphs of low degree}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {619--636}, publisher = {mathdoc}, volume = {30}, number = {4}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_4_a7/} }
TY - JOUR AU - Agnarsson, Geir AU - Halldórsson, Magnús TI - Vertex coloring the square of outerplanar graphs of low degree JO - Discussiones Mathematicae. Graph Theory PY - 2010 SP - 619 EP - 636 VL - 30 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2010_30_4_a7/ LA - en ID - DMGT_2010_30_4_a7 ER -
Agnarsson, Geir; Halldórsson, Magnús. Vertex coloring the square of outerplanar graphs of low degree. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 4, pp. 619-636. http://geodesic.mathdoc.fr/item/DMGT_2010_30_4_a7/
[1] G. Wegner, Graphs with given diameter and a coloring problem (Technical report, University of Dortmund, 1977).
[2] T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley Interscience, 1995). http://www.imada.sdu.dk/Research/Graphcol/.
[3] M. Molloy and M.R. Salavatipour, A bound on the chromatic number of the square of a planar graph, J. Combin. Theory (B) 94 (2005) 189-213, doi: 10.1016/j.jctb.2004.12.005.
[4] G. Agnarsson and M.M. Halldórsson, Coloring powers of planar graphs, SIAM J. Discrete Math. 16 (2003) 651-662, doi: 10.1137/S0895480100367950.
[5] O. Borodin, H.J. Broersma, A. Glebov and J. van den Heuvel, Stars and bunches in planar graphs. Part II: General planar graphs and colorings. CDAM Research Report Series 2002-05, (2002).
[6] J. van den Heuvel and S. McGuinness, Coloring the square of a planar graph, J. Graph Theory 42 (2003) 110-124, doi: 10.1002/jgt.10077.
[7] K.-W. Lih, W.-F. Wang and X. Zhu, Coloring the square of a K₄-minor free graph, Discrete Math. 269 (2003) 303-309, doi: 10.1016/S0012-365X(03)00059-1.
[8] T. Calamoneri and R. Petreschi, L(h,1)-labeling subclasses of planar graphs, J. Parallel and Distributed Computing 64 (2004) 414-426, doi: 10.1016/j.jpdc.2003.11.005.
[9] G. Agnarsson and M.M. Halldórsson, On Colorings of Squares of Outerplanar Graphs, in: Proceedings of the Fifteenth Annual ACM-SIAM Symposium On Discrete Algorithms (SODA 2004), (New Orleans, 2004) 237-246.
[10] G. Agnarsson and M.M. Halldórsson, On Colorings of Squares of Outerplanar Graphs, arXiv:0706.1526v1 [math.CO].
[11] K.-W. Lih and W.-F. Wang, Coloring the square of an outerplanar graph, Taiwanese J. Math. 10 (2006) 1015-1023.
[12] X. Luo, Chromatic number of square of maximal outerplanar graphs, Appl. Math. J. Chinese Univ. (B) 22 (2007) 163-168, doi: 10.1007/s11766-007-0204-7.
[13] N. Lin, Coloring the square of outerplanar graphs, J. Nanjing Norm. Univ. Nat. Sci. Ed. 27 (2004) 28-31.
[14] L.Z. Liu, Z.F. Zhang and J.F. Wang, The adjacent strong edge chromatic number of outerplanar graphs with Δ(G) ≤ 4, Appl. Math. J. Chinese Univ. (A) 15 (2000) 139-146.
[15] W.C. Shiu, P. Che Bor Lam and Z. Zhang, Entire chromatic number of maximal outerplanar graphs with maximum degree at most 4, in: Combinatorics, Graph Theory, and Algorithms, Vol. I, II (Kalamazoo, MI, 1996), 591-595 (New Issues Press, Kalamazoo, MI, 1999).
[16] N. Wang and Z. Zhang, On the complete chromatic number of maximum outerplanar graphs with maximum degree Δ = 6, Pure Appl. Math. (Xi'an) 12 (1996) 68-72.
[17] C.F. Chang, J.X. Chang, X.C. Lu, Peter C.B. Lam and J.F. Wang, Edge-face total chromatic number of outerplanar graphs with Δ(G) = 6, in: Computing and Combinatorics (Xi'an, 1995), Lecture Notes in Comput. Sci. 959 (Springer, Berlin, 1995), 396-399.
[18] N.S. Wang, Z.F. Zhang and Y.Y. Zhou, Edge-face entire chromatic numbers of maximal outerplanar graphs, Pure Appl. Math. (Xi'an) 10 (1994) 11-16.
[19] D.B. West, Introduction to Graph Theory, Prentice-Hall Inc., Upper Saddle River (New Jersey, 2nd ed., 2001).