The geodetic number of strong product graphs
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 4, pp. 687-700.

Voir la notice de l'article provenant de la source Library of Science

For two vertices u and v of a connected graph G, the set I_G[u,v] consists of all those vertices lying on u-v geodesics in G. Given a set S of vertices of G, the union of all sets I_G[u,v] for u,v ∈ S is denoted by I_G[S]. A set S ⊆ V(G) is a geodetic set if I_G[S] = V(G) and the minimum cardinality of a geodetic set is its geodetic number g(G) of G. Bounds for the geodetic number of strong product graphs are obtainted and for several classes improved bounds and exact values are obtained.
Keywords: geodetic number, extreme vertex, extreme geodesic graph, open geodetic number, double domination number
@article{DMGT_2010_30_4_a12,
     author = {Santhakumaran, A. and Ullas Chandran, S.},
     title = {The geodetic number of strong product graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {687--700},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_4_a12/}
}
TY  - JOUR
AU  - Santhakumaran, A.
AU  - Ullas Chandran, S.
TI  - The geodetic number of strong product graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2010
SP  - 687
EP  - 700
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2010_30_4_a12/
LA  - en
ID  - DMGT_2010_30_4_a12
ER  - 
%0 Journal Article
%A Santhakumaran, A.
%A Ullas Chandran, S.
%T The geodetic number of strong product graphs
%J Discussiones Mathematicae. Graph Theory
%D 2010
%P 687-700
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2010_30_4_a12/
%G en
%F DMGT_2010_30_4_a12
Santhakumaran, A.; Ullas Chandran, S. The geodetic number of strong product graphs. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 4, pp. 687-700. http://geodesic.mathdoc.fr/item/DMGT_2010_30_4_a12/

[1] B. Bresar, S. Klavžar and A.T. Horvat, On the geodetic number and related metric sets in Cartesian product graphs, Discrete Math. 308 (2008) 5555-5561, doi: 10.1016/j.disc.2007.10.007.

[2] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Redwood City, CA, 1990).

[3] G. Chartrand, F. Harary and P. Zhang, On the Geodetic Number of a Graph, Networks 39 (2002) 1-6, doi: 10.1002/net.10007.

[4] G. Chartrand, F. Harary, H.C. Swart and P. Zhang, Geodomination in Graphs, Bulletin of the ICA 31 (2001) 51-59.

[5] G. Chartrand and P. Zhang, Introduction to Graph Theory (Tata McGraw-Hill Edition, New Delhi, 2006).

[6] F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Mathl. Comput. Modeling 17 (1993) 89-95, doi: 10.1016/0895-7177(93)90259-2.

[7] F. Harary and T.W. Haynes, Double domination in graphs, Ars Combin. 55 (2000) 201-213.

[8] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (Wiley-Interscience, New York, 2000).

[9] A.P. Santhakumaran and S.V. Ullas Chandran, The hull number of strong product of graphs, (communicated).