On vertex stability with regard to complete bipartite subgraphs
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 4, pp. 663-669.

Voir la notice de l'article provenant de la source Library of Science

A graph G is called (H;k)-vertex stable if G contains a subgraph isomorphic to H ever after removing any of its k vertices. Q(H;k) denotes the minimum size among the sizes of all (H;k)-vertex stable graphs. In this paper we complete the characterization of (K_m,n;1)-vertex stable graphs with minimum size. Namely, we prove that for m ≥ 2 and n ≥ m+2, Q(K_m,n;1) = mn+m+n and K_m,n*K₁ as well as K_m+1,n+1 - e are the only (K_m,n;1)-vertex stable graphs with minimum size, confirming the conjecture of Dudek and Zwonek.
Keywords: vertex stable, bipartite graph, minimal size
@article{DMGT_2010_30_4_a10,
     author = {Dudek, Aneta and \.Zak, Andrzej},
     title = {On vertex stability with regard to complete bipartite subgraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {663--669},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_4_a10/}
}
TY  - JOUR
AU  - Dudek, Aneta
AU  - Żak, Andrzej
TI  - On vertex stability with regard to complete bipartite subgraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2010
SP  - 663
EP  - 669
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2010_30_4_a10/
LA  - en
ID  - DMGT_2010_30_4_a10
ER  - 
%0 Journal Article
%A Dudek, Aneta
%A Żak, Andrzej
%T On vertex stability with regard to complete bipartite subgraphs
%J Discussiones Mathematicae. Graph Theory
%D 2010
%P 663-669
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2010_30_4_a10/
%G en
%F DMGT_2010_30_4_a10
Dudek, Aneta; Żak, Andrzej. On vertex stability with regard to complete bipartite subgraphs. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 4, pp. 663-669. http://geodesic.mathdoc.fr/item/DMGT_2010_30_4_a10/

[1] R. Diestel, Graph Theory, second ed. (Springer-Verlag, 2000).

[2] A. Dudek, A. Szymaski and M. Zwonek, (H,k) stable graphs with minimum size, Discuss. Math. Graph Theory 28 (2008) 137-149, doi: 10.7151/dmgt.1397.

[3] A. Dudek and M. Zwonek, (H,k) stable bipartite graphs with minimum size, Discuss. Math. Graph Theory 29 (2009) 573-581, doi: 10.7151/dmgt.1465.