Structure of the set of all minimal total dominating functions of some classes of graphs
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 3, pp. 407-423.

Voir la notice de l'article provenant de la source Library of Science

In this paper we study some of the structural properties of the set of all minimal total dominating functions (_T) of cycles and paths and introduce the idea of function reducible graphs and function separable graphs. It is proved that a function reducible graph is a function separable graph. We shall also see how the idea of function reducibility is used to study the structure of _T(G) for some classes of graphs.
Keywords: minimal total dominating functions (MTDFs), convex combination of MTDFs, basic minimal total dominating functions (BMTDFs), simplex, polytope, simplicial complex, function separable graphs, function reducible graphs
@article{DMGT_2010_30_3_a4,
     author = {Kumar, K. and MacGillivray, Gary},
     title = {Structure of the set of all minimal total dominating functions of some classes of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {407--423},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a4/}
}
TY  - JOUR
AU  - Kumar, K.
AU  - MacGillivray, Gary
TI  - Structure of the set of all minimal total dominating functions of some classes of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2010
SP  - 407
EP  - 423
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a4/
LA  - en
ID  - DMGT_2010_30_3_a4
ER  - 
%0 Journal Article
%A Kumar, K.
%A MacGillivray, Gary
%T Structure of the set of all minimal total dominating functions of some classes of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2010
%P 407-423
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a4/
%G en
%F DMGT_2010_30_3_a4
Kumar, K.; MacGillivray, Gary. Structure of the set of all minimal total dominating functions of some classes of graphs. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 3, pp. 407-423. http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a4/

[1] B. Grünbaum, Convex Polytopes (Interscience Publishers, 1967).

[2] E.J. Cockayne and C.M. Mynhardt, A characterization of universal minimal total dominating functions in trees, Discrete Math. 141 (1995) 75-84, doi: 10.1016/0012-365X(93)E0192-7.

[3] E.J. Cockayne, C.M. Mynhardt and B. Yu, Universal minimal total dominating functions in graphs, Networks 24 (1994) 83-90, doi: 10.1002/net.3230240205.

[4] E.J. Cockayne, C.M. Mynhardt and B. Yu, Total dominating functions in trees: Minimality and convexity, J. Graph Theory 19 (1995) 83-92, doi: 10.1002/jgt.3190190109.

[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).

[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs - Advanced Topics (Marcel Dekker, Inc., New York, 1998).

[7] K. Reji Kumar, Studies in Graph Theory - Dominating functions, Ph.D Thesis (Manonmaniam Sundaranar University, Tirunelveli, India, 2004).

[8] K. Reji Kumar, G. MacGillivray and R.B. Bapat, Topological properties of the set of all minimal total dominating functions of a graph, manuscript.

[9] D.B. West, Graph Theory : An introductory course (Prentice Hall, New York, 2002).