The edge C₄ graph of some graph classes
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 3, pp. 365-375.

Voir la notice de l'article provenant de la source Library of Science

The edge C₄ graph of a graph G, E₄(G) is a graph whose vertices are the edges of G and two vertices in E₄(G) are adjacent if the corresponding edges in G are either incident or are opposite edges of some C₄. In this paper, we show that there exist infinitely many pairs of non isomorphic graphs whose edge C₄ graphs are isomorphic. We study the relationship between the diameter, radius and domination number of G and those of E₄(G). It is shown that for any graph G without isolated vertices, there exists a super graph H such that C(H) = G and C(E₄(H)) = E₄(G). Also we give forbidden subgraph characterizations for E₄(G) being a threshold graph, block graph, geodetic graph and weakly geodetic graph.
Keywords: edge C₄ graph, threshold graph, block graph, geodetic graph, weakly geodetic graph
@article{DMGT_2010_30_3_a0,
     author = {Menon, Manju and Vijayakumar, A.},
     title = {The edge {C₄} graph of some graph classes},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {365--375},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a0/}
}
TY  - JOUR
AU  - Menon, Manju
AU  - Vijayakumar, A.
TI  - The edge C₄ graph of some graph classes
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2010
SP  - 365
EP  - 375
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a0/
LA  - en
ID  - DMGT_2010_30_3_a0
ER  - 
%0 Journal Article
%A Menon, Manju
%A Vijayakumar, A.
%T The edge C₄ graph of some graph classes
%J Discussiones Mathematicae. Graph Theory
%D 2010
%P 365-375
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a0/
%G en
%F DMGT_2010_30_3_a0
Menon, Manju; Vijayakumar, A. The edge C₄ graph of some graph classes. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 3, pp. 365-375. http://geodesic.mathdoc.fr/item/DMGT_2010_30_3_a0/

[1] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes (SIAM, 1999).

[2] V. Chvátal and P.L. Hammer, Aggregation of inequalities in integer programming, Ann. Discrete Math. 1 (1997) 145-162.

[3] D.G. Corneil, Y. Perl and I.K. Stewart, A linear recognition algorithm for cographs, SIAM J. Comput. 14 (1985) 926-934, doi: 10.1137/0214065.

[4] S. Foldes and P.L. Hammer, The Dilworth number of a graph, Ann. Discrete Math. 2 (1978) 211-219, doi: 10.1016/S0167-5060(08)70334-0.

[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1988).

[6] E. Howorka, On metric properties of certain clique graphs, J. Combin. Theory (B) 27 (1979) 67-74, doi: 10.1016/0095-8956(79)90069-8.

[7] D.C. Kay and G. Chartrand, A characterization of certain Ptolemic graphs, Canad. J. Math. 17 (1965) 342-346, doi: 10.4153/CJM-1965-034-0.

[8] M. Knor, L. Niepel and L. Soltes, Centers in line graphs, Math. Slovaca 43 (1993) 11-20.

[9] M.K. Menon and A. Vijayakumar, The edge C₄ graph of a graph, in: Proc. International Conference on Discrete Math. Ramanujan Math. Soc. Lect. Notes Ser. 7 (2008) 245-248.

[10] O. Ore, Theory of Graphs, Amer. Math. Soc. Coll. Publ. 38, (Providence R.I, 1962).

[11] E. Prisner, Graph Dynamics (Longman, 1995).

[12] S.B. Rao, A. Lakshmanan and A. Vijayakumar, Cographic and global cographic domination number of a graph, Ars Combin. (to appear).

[13] D.B. West, Introduction to Graph Theory (Prentice Hall of India, 2003).