Nordhaus-Gaddum results for weakly convex domination number of a graph
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 2, pp. 257-263
Cet article a éte moissonné depuis la source Library of Science
Nordhaus-Gaddum results for weakly convex domination number of a graph G are studied.
Keywords:
weakly convex domination number, Nordhaus-Gaddum results
@article{DMGT_2010_30_2_a6,
author = {Lema\'nska, Magdalena},
title = {Nordhaus-Gaddum results for weakly convex domination number of a graph},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {257--263},
year = {2010},
volume = {30},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a6/}
}
Lemańska, Magdalena. Nordhaus-Gaddum results for weakly convex domination number of a graph. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 2, pp. 257-263. http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a6/
[1] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., 1998).
[2] S.T. Hedetniemi and R. Laskar, Connected domination in graphs, in: B. Bollobás (ed.), Graph Theory and Combinatorics (Academic Press, London, 1984) 209-218.
[3] F. Jaegar and C. Payan, Relations du type Nordhaus-Gaddum pour le nombre d'absorption d'un graphe simple, Compt. Rend. Acad. Sci. Paris 274 (1972) 728-730.
[4] E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175-177, doi: 10.2307/2306658.