On a family of cubic graphs containing the flower snarks
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 2, pp. 289-314.

Voir la notice de l'article provenant de la source Library of Science

We consider cubic graphs formed with k ≥ 2 disjoint claws C_i   K_1,3 (0 ≤ i ≤ k-1) such that for every integer i modulo k the three vertices of degree 1 of C_i are joined to the three vertices of degree 1 of C_i-1 and joined to the three vertices of degree 1 of C_i+1. Denote by t_i the vertex of degree 3 of C_i and by T the set t₁,t₂,...,t_k-1. In such a way we construct three distinct graphs, namely FS(1,k), FS(2,k) and FS(3,k). The graph FS(j,k) (j ∈ 1,2,3) is the graph where the set of vertices ⋃_i = 0^i = k-1 V(C_i)∖T induce j cycles (note that the graphs FS(2,2p+1), p ≥ 2, are the flower snarks defined by Isaacs [8]). We determine the number of perfect matchings of every FS(j,k). A cubic graph G is said to be 2-factor hamiltonian if every 2-factor of G is a hamiltonian cycle. We characterize the graphs FS(j,k) that are 2-factor hamiltonian (note that FS(1,3) is the "Triplex Graph" of Robertson, Seymour and Thomas [15]). A strong matching M in a graph G is a matching M such that there is no edge of E(G) connecting any two edges of M. A cubic graph having a perfect matching union of two strong matchings is said to be a Jaeger's graph. We characterize the graphs FS(j,k) that are Jaeger's graphs.
Keywords: cubic graph, perfect matching, strong matching, counting, hamiltonian cycle, 2-factor hamiltonian
@article{DMGT_2010_30_2_a10,
     author = {Fouquet, Jean-Luc and Thuillier, Henri and Vanherpe, Jean-Marie},
     title = {On a family of cubic graphs containing the flower snarks},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {289--314},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a10/}
}
TY  - JOUR
AU  - Fouquet, Jean-Luc
AU  - Thuillier, Henri
AU  - Vanherpe, Jean-Marie
TI  - On a family of cubic graphs containing the flower snarks
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2010
SP  - 289
EP  - 314
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a10/
LA  - en
ID  - DMGT_2010_30_2_a10
ER  - 
%0 Journal Article
%A Fouquet, Jean-Luc
%A Thuillier, Henri
%A Vanherpe, Jean-Marie
%T On a family of cubic graphs containing the flower snarks
%J Discussiones Mathematicae. Graph Theory
%D 2010
%P 289-314
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a10/
%G en
%F DMGT_2010_30_2_a10
Fouquet, Jean-Luc; Thuillier, Henri; Vanherpe, Jean-Marie. On a family of cubic graphs containing the flower snarks. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 2, pp. 289-314. http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a10/

[1] M. Abreu, A.A. Diwan, B. Jackson, D. Labbate and J. Sheehan, Pseudo 2-factor isomorphic regular bipartite graphs, J. Combin. Theory (B) 98 (2008) 432-442, doi: 10.1016/j.jctb.2007.08.006.

[2] S. Bonvicini and G. Mazzuoccolo, On perfectly one-factorable cubic graphs, Electronic Notes in Discrete Math. 24 (2006) 47-51, doi: 10.1016/j.endm.2006.06.008.

[3] J.-L. Fouquet, H. Thuillier, J.-M. Vanherpe and A.P. Wojda, On linear arboricity of cubic graphs, LIFO Univ. d'Orlans - Research Report 13 (2007) 1-28.

[4] J.-L. Fouquet, H. Thuillier, J.-M. Vanherpe and A.P. Wojda, On isomorphic linear partition in cubic graphs, Discrete Math. 309 (2009) 6425-6433, doi: 10.1016/j.disc.2008.10.017.

[5] D.R. Fulkerson, Blocking and anti-blocking pairs of polyhedra, Math. Programming 1 (1971) 168-194, doi: 10.1007/BF01584085.

[6] M. Funk, B. Jackson, D. Labbate and J. Sheehan, 2-factor hamiltonian graphs, J. Combin. Theory (B) 87 (2003) 138-144, doi: 10.1016/S0095-8956(02)00031-X.

[7] M. Funk and D. Labbate, On minimally one-factorable r-regular bipartite graphs, Discrete Math. 216 (2000) 121-137, doi: 10.1016/S0012-365X(99)00241-1.

[8] R. Isaacs, Infinite families of non-trivial trivalent graphs which are not Tait colorable, Am. Math. Monthly 82 (1975) 221-239, doi: 10.2307/2319844.

[9] F. Jaeger, Etude de quelques invariants et problèmes d'existence en théorie de graphes (Thèse d'État, IMAG, Grenoble, 1976).

[10] A. Kotzig, Balanced colourings and the four colour conjecture, in: Proc. Sympos. Smolenice, 1963, Publ. House Czechoslovak Acad. Sci. (Prague, 1964) 63-82.

[11] A. Kotzig, Construction for Hamiltonian graphs of degree three (in Russian), Cas. pest. mat. 87 (1962) 148-168.

[12] A. Kotzig and J. Labelle, Quelques problmes ouverts concernant les graphes fortement hamiltoniens, Ann. Sci. Math. Qubec 3 (1979) 95-106.

[13] D. Labbate, On 3-cut reductions of minimally 1-factorable cubic bigraphs, Discrete Math. 231 (2001) 303-310, doi: 10.1016/S0012-365X(00)00327-7.

[14] D. Labbate, Characterizing minimally 1-factorable r-regular bipartite graphs, Discrete Math. 248 (2002) 109-123, doi: 10.1016/S0012-365X(01)00189-3.

[15] N. Robertson and P. Seymour, Excluded minor in cubic graphs, (announced), see also www.math.gatech.edu/thomas/OLDFTP/cubic/graphs.

[16] P. Seymour, On multi-colourings of cubic graphs, and conjectures of Fulkerson and Tutte, Proc. London Math. Soc. 38 (1979) 423-460, doi: 10.1112/plms/s3-38.3.423.