Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2010_30_2_a10, author = {Fouquet, Jean-Luc and Thuillier, Henri and Vanherpe, Jean-Marie}, title = {On a family of cubic graphs containing the flower snarks}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {289--314}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a10/} }
TY - JOUR AU - Fouquet, Jean-Luc AU - Thuillier, Henri AU - Vanherpe, Jean-Marie TI - On a family of cubic graphs containing the flower snarks JO - Discussiones Mathematicae. Graph Theory PY - 2010 SP - 289 EP - 314 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a10/ LA - en ID - DMGT_2010_30_2_a10 ER -
%0 Journal Article %A Fouquet, Jean-Luc %A Thuillier, Henri %A Vanherpe, Jean-Marie %T On a family of cubic graphs containing the flower snarks %J Discussiones Mathematicae. Graph Theory %D 2010 %P 289-314 %V 30 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a10/ %G en %F DMGT_2010_30_2_a10
Fouquet, Jean-Luc; Thuillier, Henri; Vanherpe, Jean-Marie. On a family of cubic graphs containing the flower snarks. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 2, pp. 289-314. http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a10/
[1] M. Abreu, A.A. Diwan, B. Jackson, D. Labbate and J. Sheehan, Pseudo 2-factor isomorphic regular bipartite graphs, J. Combin. Theory (B) 98 (2008) 432-442, doi: 10.1016/j.jctb.2007.08.006.
[2] S. Bonvicini and G. Mazzuoccolo, On perfectly one-factorable cubic graphs, Electronic Notes in Discrete Math. 24 (2006) 47-51, doi: 10.1016/j.endm.2006.06.008.
[3] J.-L. Fouquet, H. Thuillier, J.-M. Vanherpe and A.P. Wojda, On linear arboricity of cubic graphs, LIFO Univ. d'Orlans - Research Report 13 (2007) 1-28.
[4] J.-L. Fouquet, H. Thuillier, J.-M. Vanherpe and A.P. Wojda, On isomorphic linear partition in cubic graphs, Discrete Math. 309 (2009) 6425-6433, doi: 10.1016/j.disc.2008.10.017.
[5] D.R. Fulkerson, Blocking and anti-blocking pairs of polyhedra, Math. Programming 1 (1971) 168-194, doi: 10.1007/BF01584085.
[6] M. Funk, B. Jackson, D. Labbate and J. Sheehan, 2-factor hamiltonian graphs, J. Combin. Theory (B) 87 (2003) 138-144, doi: 10.1016/S0095-8956(02)00031-X.
[7] M. Funk and D. Labbate, On minimally one-factorable r-regular bipartite graphs, Discrete Math. 216 (2000) 121-137, doi: 10.1016/S0012-365X(99)00241-1.
[8] R. Isaacs, Infinite families of non-trivial trivalent graphs which are not Tait colorable, Am. Math. Monthly 82 (1975) 221-239, doi: 10.2307/2319844.
[9] F. Jaeger, Etude de quelques invariants et problèmes d'existence en théorie de graphes (Thèse d'État, IMAG, Grenoble, 1976).
[10] A. Kotzig, Balanced colourings and the four colour conjecture, in: Proc. Sympos. Smolenice, 1963, Publ. House Czechoslovak Acad. Sci. (Prague, 1964) 63-82.
[11] A. Kotzig, Construction for Hamiltonian graphs of degree three (in Russian), Cas. pest. mat. 87 (1962) 148-168.
[12] A. Kotzig and J. Labelle, Quelques problmes ouverts concernant les graphes fortement hamiltoniens, Ann. Sci. Math. Qubec 3 (1979) 95-106.
[13] D. Labbate, On 3-cut reductions of minimally 1-factorable cubic bigraphs, Discrete Math. 231 (2001) 303-310, doi: 10.1016/S0012-365X(00)00327-7.
[14] D. Labbate, Characterizing minimally 1-factorable r-regular bipartite graphs, Discrete Math. 248 (2002) 109-123, doi: 10.1016/S0012-365X(01)00189-3.
[15] N. Robertson and P. Seymour, Excluded minor in cubic graphs, (announced), see also www.math.gatech.edu/thomas/OLDFTP/cubic/graphs.
[16] P. Seymour, On multi-colourings of cubic graphs, and conjectures of Fulkerson and Tutte, Proc. London Math. Soc. 38 (1979) 423-460, doi: 10.1112/plms/s3-38.3.423.