On a family of cubic graphs containing the flower snarks
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 2, pp. 289-314

Voir la notice de l'article provenant de la source Library of Science

We consider cubic graphs formed with k ≥ 2 disjoint claws C_i   K_1,3 (0 ≤ i ≤ k-1) such that for every integer i modulo k the three vertices of degree 1 of C_i are joined to the three vertices of degree 1 of C_i-1 and joined to the three vertices of degree 1 of C_i+1. Denote by t_i the vertex of degree 3 of C_i and by T the set t₁,t₂,...,t_k-1. In such a way we construct three distinct graphs, namely FS(1,k), FS(2,k) and FS(3,k). The graph FS(j,k) (j ∈ 1,2,3) is the graph where the set of vertices ⋃_i = 0^i = k-1 V(C_i)∖T induce j cycles (note that the graphs FS(2,2p+1), p ≥ 2, are the flower snarks defined by Isaacs [8]). We determine the number of perfect matchings of every FS(j,k). A cubic graph G is said to be 2-factor hamiltonian if every 2-factor of G is a hamiltonian cycle. We characterize the graphs FS(j,k) that are 2-factor hamiltonian (note that FS(1,3) is the "Triplex Graph" of Robertson, Seymour and Thomas [15]). A strong matching M in a graph G is a matching M such that there is no edge of E(G) connecting any two edges of M. A cubic graph having a perfect matching union of two strong matchings is said to be a Jaeger's graph. We characterize the graphs FS(j,k) that are Jaeger's graphs.
Keywords: cubic graph, perfect matching, strong matching, counting, hamiltonian cycle, 2-factor hamiltonian
@article{DMGT_2010_30_2_a10,
     author = {Fouquet, Jean-Luc and Thuillier, Henri and Vanherpe, Jean-Marie},
     title = {On a family of cubic graphs containing the flower snarks},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {289--314},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a10/}
}
TY  - JOUR
AU  - Fouquet, Jean-Luc
AU  - Thuillier, Henri
AU  - Vanherpe, Jean-Marie
TI  - On a family of cubic graphs containing the flower snarks
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2010
SP  - 289
EP  - 314
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a10/
LA  - en
ID  - DMGT_2010_30_2_a10
ER  - 
%0 Journal Article
%A Fouquet, Jean-Luc
%A Thuillier, Henri
%A Vanherpe, Jean-Marie
%T On a family of cubic graphs containing the flower snarks
%J Discussiones Mathematicae. Graph Theory
%D 2010
%P 289-314
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a10/
%G en
%F DMGT_2010_30_2_a10
Fouquet, Jean-Luc; Thuillier, Henri; Vanherpe, Jean-Marie. On a family of cubic graphs containing the flower snarks. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 2, pp. 289-314. http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a10/