On a family of cubic graphs containing the flower snarks
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 2, pp. 289-314
Voir la notice de l'article provenant de la source Library of Science
We consider cubic graphs formed with k ≥ 2 disjoint claws C_i K_1,3 (0 ≤ i ≤ k-1) such that for every integer i modulo k the three vertices of degree 1 of C_i are joined to the three vertices of degree 1 of C_i-1 and joined to the three vertices of degree 1 of C_i+1. Denote by t_i the vertex of degree 3 of C_i and by T the set t₁,t₂,...,t_k-1. In such a way we construct three distinct graphs, namely FS(1,k), FS(2,k) and FS(3,k). The graph FS(j,k) (j ∈ 1,2,3) is the graph where the set of vertices ⋃_i = 0^i = k-1 V(C_i)∖T induce j cycles (note that the graphs FS(2,2p+1), p ≥ 2, are the flower snarks defined by Isaacs [8]). We determine the number of perfect matchings of every FS(j,k). A cubic graph G is said to be 2-factor hamiltonian if every 2-factor of G is a hamiltonian cycle. We characterize the graphs FS(j,k) that are 2-factor hamiltonian (note that FS(1,3) is the "Triplex Graph" of Robertson, Seymour and Thomas [15]). A strong matching M in a graph G is a matching M such that there is no edge of E(G) connecting any two edges of M. A cubic graph having a perfect matching union of two strong matchings is said to be a Jaeger's graph. We characterize the graphs FS(j,k) that are Jaeger's graphs.
Keywords:
cubic graph, perfect matching, strong matching, counting, hamiltonian cycle, 2-factor hamiltonian
@article{DMGT_2010_30_2_a10,
author = {Fouquet, Jean-Luc and Thuillier, Henri and Vanherpe, Jean-Marie},
title = {On a family of cubic graphs containing the flower snarks},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {289--314},
publisher = {mathdoc},
volume = {30},
number = {2},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a10/}
}
TY - JOUR AU - Fouquet, Jean-Luc AU - Thuillier, Henri AU - Vanherpe, Jean-Marie TI - On a family of cubic graphs containing the flower snarks JO - Discussiones Mathematicae. Graph Theory PY - 2010 SP - 289 EP - 314 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a10/ LA - en ID - DMGT_2010_30_2_a10 ER -
%0 Journal Article %A Fouquet, Jean-Luc %A Thuillier, Henri %A Vanherpe, Jean-Marie %T On a family of cubic graphs containing the flower snarks %J Discussiones Mathematicae. Graph Theory %D 2010 %P 289-314 %V 30 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a10/ %G en %F DMGT_2010_30_2_a10
Fouquet, Jean-Luc; Thuillier, Henri; Vanherpe, Jean-Marie. On a family of cubic graphs containing the flower snarks. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 2, pp. 289-314. http://geodesic.mathdoc.fr/item/DMGT_2010_30_2_a10/