On characterization of uniquely 3-list colorable complete multipartite graphs
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 1, pp. 105-114.

Voir la notice de l'article provenant de la source Library of Science

For each vertex v of a graph G, if there exists a list of k colors, L(v), such that there is a unique proper coloring for G from this collection of lists, then G is called a uniquely k-list colorable graph. Ghebleh and Mahmoodian characterized uniquely 3-list colorable complete multipartite graphs except for nine graphs: K_2,2,r r ∈ 4,5,6,7,8, K_2,3,4, K_1*4,4, K_1*4,5, K_1*5,4. Also, they conjectured that the nine graphs are not U3LC graphs. After that, except for K_2,2,r r ∈ 4,5,6,7,8, the others have been proved not to be U3LC graphs. In this paper we first prove that K_2,2,8 is not U3LC graph, and thus as a direct corollary, K_2,2,r (r = 4,5,6,7,8) are not U3LC graphs, and then the uniquely 3-list colorable complete multipartite graphs are characterized completely.
Keywords: list coloring, complete multipartite graph, uniquely 3-list colorable graph
@article{DMGT_2010_30_1_a8,
     author = {Zhao, Yancai and Shan, Erfang},
     title = {On characterization of uniquely 3-list colorable complete multipartite graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {105--114},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a8/}
}
TY  - JOUR
AU  - Zhao, Yancai
AU  - Shan, Erfang
TI  - On characterization of uniquely 3-list colorable complete multipartite graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2010
SP  - 105
EP  - 114
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a8/
LA  - en
ID  - DMGT_2010_30_1_a8
ER  - 
%0 Journal Article
%A Zhao, Yancai
%A Shan, Erfang
%T On characterization of uniquely 3-list colorable complete multipartite graphs
%J Discussiones Mathematicae. Graph Theory
%D 2010
%P 105-114
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a8/
%G en
%F DMGT_2010_30_1_a8
Zhao, Yancai; Shan, Erfang. On characterization of uniquely 3-list colorable complete multipartite graphs. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 1, pp. 105-114. http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a8/

[1] N. Alon, Restricted colorings of graphs, in: K. Walker, editor, Surveys in Combinatorics, Number 187 in London Math. Soc. LNS, pp. 1-33, 1993.

[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American Elsevier Publishing Co., INC., New York, 1976).

[3] J.H. Dinitz and W.J. Martin, The stipulation polynomial of a uniquely list colorable graph, Austral. J. Combin. 11 (1995) 105-115.

[4] P. Erdös, A.L. Rubin and H. Taylor, Choosability in graphs, in: Proceedings of West Coast Conference on Combinatorics, Graph Theory and Computing, number 26 in Congr. Number., pp. 125-157, Arcata, CA, September 1979.

[5] Y.G. Ganjali, M. Ghebleh, H. Hajiabohassan, M. Mirzadeh and B.S. Sadjad, Uniquely 2-list colorable graphs, Discrete Appl. Math. 119 (2002) 217-225, doi: 10.1016/S0166-218X(00)00335-8.

[6] M. Ghebleh and E.S. Mahmoodian, On uniquely list colorable graphs, Ars Combin. 59 (2001) 307-318.

[7] W.J. He, Y.N. Wang, Y.F. Shen and X. Ma, On property M(3) of some complete multipartite graphs, Australasian Journal of Combinatorics, to appear.

[8] M. Mahdian and E.S. Mahmoodian, A characterization of uniquely 2-list colorable graphs, Ars Combin. 51 (1999) 295-305.

[9] E.S. Mahmoodian and M. Mahdian, On the uniquely list colorable graphs, in: Proceedings of the 28th Annual Iranian Mathematics Conference, Part 1, number 377 in Tabriz Univ. Ser., Tabriz, 1997.

[10] Y.F. Shen and Y.N. Wang, On uniquely list colorable complete multipartite graphs, Ars Combin. 88 (2008) 367-377.

[11] V.G. Vizing, Coloring the vertices of a graph in prescribed colors, (in Russian) Discret. Anal. 29 (1976) 3-10.

[12] Y.Q. Zhao, W.J. He, Y.F. Shen and Y.N. Wang, Note on characterization of uniquely 3-list colorable complete multipartite graphs, in: Discrete Geometry, Combinatorics and Graph Theory, LNCS 4381 (Springer, Berlin, 2007) 278-287, doi: 10.1007/978-3-540-70666-3₃0.