Vertex-distinguishing edge-colorings of linear forests
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 1, pp. 95-103
Voir la notice de l'article provenant de la source Library of Science
In the PhD thesis by Burris (Memphis (1993)), a conjecture was made concerning the number of colors c(G) required to edge-color a simple graph G so that no two distinct vertices are incident to the same multiset of colors. We find the exact value of c(G) - the irregular coloring number, and hence verify the conjecture when G is a vertex-disjoint union of paths. We also investigate the point-distinguishing chromatic index, χ₀(G), where sets, instead of multisets, are required to be distinct, and determine its value for the same family of graphs.
Keywords:
irregular edge-coloring, vertex-distinguishing edge-coloring, point-distinguishing chromatic index
@article{DMGT_2010_30_1_a7,
author = {Cichacz, Sylwia and Przyby{\l}o, Jakub},
title = {Vertex-distinguishing edge-colorings of linear forests},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {95--103},
publisher = {mathdoc},
volume = {30},
number = {1},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a7/}
}
TY - JOUR AU - Cichacz, Sylwia AU - Przybyło, Jakub TI - Vertex-distinguishing edge-colorings of linear forests JO - Discussiones Mathematicae. Graph Theory PY - 2010 SP - 95 EP - 103 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a7/ LA - en ID - DMGT_2010_30_1_a7 ER -
Cichacz, Sylwia; Przybyło, Jakub. Vertex-distinguishing edge-colorings of linear forests. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 1, pp. 95-103. http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a7/