Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2010_30_1_a4, author = {Santhakumaran, A. and Ullas Chandran, S.}, title = {The edge geodetic number and {Cartesian} product of graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {55--73}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a4/} }
TY - JOUR AU - Santhakumaran, A. AU - Ullas Chandran, S. TI - The edge geodetic number and Cartesian product of graphs JO - Discussiones Mathematicae. Graph Theory PY - 2010 SP - 55 EP - 73 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a4/ LA - en ID - DMGT_2010_30_1_a4 ER -
Santhakumaran, A.; Ullas Chandran, S. The edge geodetic number and Cartesian product of graphs. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 1, pp. 55-73. http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a4/
[1] B. Bresar, S. Klavžar and A.T. Horvat, On the geodetic number and related metric sets in Cartesian product graphs, (2007), Discrete Math. 308 (2008) 5555-5561, doi: 10.1016/j.disc.2007.10.007.
[2] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Redwood City, CA, 1990).
[3] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks 39 (2002) 1-6, doi: 10.1002/net.10007.
[4] G. Chartrand and P. Zhang, Introduction to Graph Theory (Tata McGraw-Hill Edition, New Delhi, 2006).
[5] F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Math. Comput. Modeling 17 (1993) 89-95, doi: 10.1016/0895-7177(93)90259-2.
[6] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (Wiley-Interscience, New York, 2000).
[7] A.P. Santhakumaran and J. John, Edge geodetic number of a graph, J. Discrete Math. Sciences Cryptography 10 (2007) 415-432.