The edge geodetic number and Cartesian product of graphs
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 1, pp. 55-73
Voir la notice de l'article provenant de la source Library of Science
For a nontrivial connected graph G = (V(G),E(G)), a set S⊆ V(G) is called an edge geodetic set of G if every edge of G is contained in a geodesic joining some pair of vertices in S. The edge geodetic number g₁(G) of G is the minimum order of its edge geodetic sets. Bounds for the edge geodetic number of Cartesian product graphs are proved and improved upper bounds are determined for a special class of graphs. Exact values of the edge geodetic number of Cartesian product are obtained for several classes of graphs. Also we obtain a necessary condition of G for which g₁(G ☐ K₂) = g₁(G).
Keywords:
geodetic number, edge geodetic number, linear edge geodetic set, perfect edge geodetic set, (edge, vertex)-geodetic set, superior edge geodetic set
@article{DMGT_2010_30_1_a4,
author = {Santhakumaran, A. and Ullas Chandran, S.},
title = {The edge geodetic number and {Cartesian} product of graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {55--73},
publisher = {mathdoc},
volume = {30},
number = {1},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a4/}
}
TY - JOUR AU - Santhakumaran, A. AU - Ullas Chandran, S. TI - The edge geodetic number and Cartesian product of graphs JO - Discussiones Mathematicae. Graph Theory PY - 2010 SP - 55 EP - 73 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a4/ LA - en ID - DMGT_2010_30_1_a4 ER -
Santhakumaran, A.; Ullas Chandran, S. The edge geodetic number and Cartesian product of graphs. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 1, pp. 55-73. http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a4/