Value sets of graphs edge-weighted with elements of a finite abelian group
Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 1, pp. 5-15.

Voir la notice de l'article provenant de la source Library of Science

Given a graph G = (V,E) of order n and a finite abelian group H = (H,+) of order n, a bijection f of V onto H is called a vertex H-labeling of G. Let g(e) ≡ (f(u)+f(v)) mod H for each edge e = u,v in E induce an edge H-labeling of G. Then, the sum Hval_f(G) ≡ ∑_e ∈ E g(e) mod H is called the H-value of G relative to f and the set HvalS(G) of all H-values of G over all possible vertex H-labelings is called the H-value set of G. Theorems determining HvalS(G) for given H and G are obtained.
Keywords: graph labeling, edge labeling, vertex labeling, abelian group
@article{DMGT_2010_30_1_a0,
     author = {DuCasse, Edgar and Gargano, Michael and Quintas, Louis},
     title = {Value sets of graphs edge-weighted with elements of a finite abelian group},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {5--15},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a0/}
}
TY  - JOUR
AU  - DuCasse, Edgar
AU  - Gargano, Michael
AU  - Quintas, Louis
TI  - Value sets of graphs edge-weighted with elements of a finite abelian group
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2010
SP  - 5
EP  - 15
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a0/
LA  - en
ID  - DMGT_2010_30_1_a0
ER  - 
%0 Journal Article
%A DuCasse, Edgar
%A Gargano, Michael
%A Quintas, Louis
%T Value sets of graphs edge-weighted with elements of a finite abelian group
%J Discussiones Mathematicae. Graph Theory
%D 2010
%P 5-15
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a0/
%G en
%F DMGT_2010_30_1_a0
DuCasse, Edgar; Gargano, Michael; Quintas, Louis. Value sets of graphs edge-weighted with elements of a finite abelian group. Discussiones Mathematicae. Graph Theory, Tome 30 (2010) no. 1, pp. 5-15. http://geodesic.mathdoc.fr/item/DMGT_2010_30_1_a0/

[1] E.G. DuCasse, M.L. Gargano, and L.V. Quintas, The edge-weight sums of a graph mod n (to have been presented at Thirty-Ninth Southeastern International Conference on Combinatorics, Graph Theory, and Computing, Florida Atlantic University, Boca Raton, Florida, March 3-7, 2008 by Michael L. Gargano, who could not do so due to illness).

[2] J.A. Gallian, A dynamic survey of graph labeling, Electronic J. Combin. 14 (2007) #DS6.

[3] J.A. Gallian, Contemporary Abstract Algebra, 6th Edition (Houghton-Mifflin, Boston, Massachusetts, 2006).

[4] D.B. West, Introduction to Graph Theory, 2nd Edition (Prentice Hall, Upper Saddle River, New Jersey, 2001).