On Lee's conjecture and some results
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 3, pp. 481-498.

Voir la notice de l'article provenant de la source Library of Science

S.M. Lee proposed the conjecture: for any n > 1 and any permutation f in S(n), the permutation graph P(Pₙ,f) is graceful. For any integer n > 1 and permutation f in S(n), we discuss the gracefulness of the permutation graph P(Pₙ,f) if f = ∏_k = 0^l-1 (m+2k, m+2k+1), and ∏_k=0^l-1 (m+4k,m+4k+2)(m+4k+1,m+4k+3) for any positive integers m and l.
Keywords: permutation graph, graceful, Lee's conjecture
@article{DMGT_2009_29_3_a2,
     author = {Fan, Lixia and Liang, Zhihe},
     title = {On {Lee's} conjecture and some results},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {481--498},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a2/}
}
TY  - JOUR
AU  - Fan, Lixia
AU  - Liang, Zhihe
TI  - On Lee's conjecture and some results
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2009
SP  - 481
EP  - 498
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a2/
LA  - en
ID  - DMGT_2009_29_3_a2
ER  - 
%0 Journal Article
%A Fan, Lixia
%A Liang, Zhihe
%T On Lee's conjecture and some results
%J Discussiones Mathematicae. Graph Theory
%D 2009
%P 481-498
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a2/
%G en
%F DMGT_2009_29_3_a2
Fan, Lixia; Liang, Zhihe. On Lee's conjecture and some results. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 3, pp. 481-498. http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a2/

[1] A. Rosa, On certain valuations of the vertices of a graph, in: Theory of Graphs, Proc. of Intemational Symposium, Rome 1966 (Gordon Breach, New York 1967), 349-355.

[2] S.W. Golomb, How to number a graph? in: R.C. Read, ed., Graph Theory and Computing (Academic Press, New York, 1972) 23-27.

[3] Z. Liang, On the graceful conjecture of permutation graphs of paths, Ars Combin. 91 (2009) 65-82.

[4] J.A. Gallian, A dynamic survey of graph labeling, Electronic J. Combin. 14 (2007) DS#6, 1-180.

[5] J.C. Bermond, Graceful graphs, radio antennae and Fench windmills, in: R.J. Wilson, ed., Graph Theory and Combinatorics (Pitman, London, 1979), 13-37.

[6] A.K. Dewdney, The search for an invisible ruler that will help radio astronomers to measure the earth, Scientific American, Dec. (1986) 16-19, doi: 10.1038/scientificamerican0186-16.

[7] S.M. Lee, K.Y. Lai, Y.S. Wang and M.K. Kiang, On the graceful permutation graphs conjecture, Congr. Numer. 103 (1994) 193-201.

[8] M. Maheo, Strongly graceful graphs, Discrete Math. 29 (1980) 39-46, doi: 10.1016/0012-365X(90)90285-P.

[9] C. Delorme, Two sets of graceful graphs, J. Graph Theory 4 (1980) 247-250, doi: 10.1002/jgt.3190040214.

[10] R.W. Frucht and J.A. Gallian, Labelling prisms, Ars Combin. 26 (1988) 69-82.

[11] J.A. Gallian, Labelling prisms and prism related graphs, Congress. Numer. 59 (1987) 89-100.

[12] Z. Liang, H. Zhang, N. Xu, S. Ye, Y. Fan and H. Ge, Gracefulness of five permutation graphs of paths, Utilitas Mathematica 72 (2007) 241-249.

[13] N. Han and Z. Liang, On the graceful permutation graphs conjecture, J. Discrete Math. Sci. Cryptography 11 (2008) 501-526.