Forbidden-minor characterization for the class of graphic element splitting matroids
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 3, pp. 629-644 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

This paper is based on the element splitting operation for binary matroids that was introduced by Azadi as a natural generalization of the corresponding operation in graphs. In this paper, we consider the problem of determining precisely which graphic matroids M have the property that the element splitting operation, by every pair of elements on M yields a graphic matroid. This problem is solved by proving that there is exactly one minor-minimal matroid that does not have this property.
Keywords: binary matroid, graphic matroid, minor, splitting operation, element splitting operation
@article{DMGT_2009_29_3_a12,
     author = {Dalvi, Kiran and Borse, M. and Shikare, M.},
     title = {Forbidden-minor characterization for the class of graphic element splitting matroids},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {629--644},
     year = {2009},
     volume = {29},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a12/}
}
TY  - JOUR
AU  - Dalvi, Kiran
AU  - Borse, M.
AU  - Shikare, M.
TI  - Forbidden-minor characterization for the class of graphic element splitting matroids
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2009
SP  - 629
EP  - 644
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a12/
LA  - en
ID  - DMGT_2009_29_3_a12
ER  - 
%0 Journal Article
%A Dalvi, Kiran
%A Borse, M.
%A Shikare, M.
%T Forbidden-minor characterization for the class of graphic element splitting matroids
%J Discussiones Mathematicae. Graph Theory
%D 2009
%P 629-644
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a12/
%G en
%F DMGT_2009_29_3_a12
Dalvi, Kiran; Borse, M.; Shikare, M. Forbidden-minor characterization for the class of graphic element splitting matroids. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 3, pp. 629-644. http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a12/

[1] G. Azadi, Generalized splitting operation for binary matroids and related results (Ph.D. Thesis, University of Pune, 2001).

[2] Y.M. Borse, M.M. Shikare and Kiran Dalvi, Excluded-Minor characterization for the class of Cographic Splitting Matroids, Ars Combin., to appear.

[3] H. Fleischner, Eulerian Graphs and Related Topics, Part 1, Vol. 1 (North Holland, Amsterdam, 1990).

[4] A. Habib, Some new operations on matroids and related results (Ph.D. Thesis, University of Pune, 2005).

[5] F. Harary, Graph Theory (Addison-Wesley, Reading, 1969).

[6] J.G. Oxley, Matroid Theory (Oxford University Press, Oxford, 1992).

[7] T.T. Raghunathan, M.M. Shikare and B.N. Waphare, Splitting in a binary matroid, Discrete Math. 184 (1998) 267-271, doi: 10.1016/S0012-365X(97)00202-1.

[8] A. Recski, Matroid Theory and Its Applications (Springer Verlag, Berlin, 1989).

[9] M.M. Shikare and G. Azadi, Determination of the bases of a splitting matroid, European J. Combin. 24 (2003) 45-52, doi: 10.1016/S0195-6698(02)00135-X.

[10] M.M. Shikare, Splitting lemma for binary matroids, Southeast Asian Bull. Math. 32 (2007) 151-159.

[11] M.M. Shikare and B.N. Waphare, Excluded-Minors for the class of graphic splitting matroids, Ars Combin., to appear.

[12] P.J. Slater, A classification of 4-connected graphs, J. Combin. Theory 17 (1974) 281-298, doi: 10.1016/0095-8956(74)90034-3.

[13] W.T. Tutte, A theory of 3-connected graphs, Indag. Math. 23 (1961) 441-455.

[14] D.J.A. Welsh, Matroid Theory (Academic Press, London, 1976).