Independent transversals of longest paths in locally semicomplete and locally transitive digraphs
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 3, pp. 469-480
Voir la notice de l'article provenant de la source Library of Science
We present several results concerning the Laborde-Payan-Xuang conjecture stating that in every digraph there exists an independent set of vertices intersecting every longest path. The digraphs we consider are defined in terms of local semicompleteness and local transitivity. We also look at oriented graphs for which the length of a longest path does not exceed 4.
Keywords:
independent set, longest path, locally semicomplete, locally transitive
@article{DMGT_2009_29_3_a1,
author = {Galeana-S\'anchez, Hortensia and G\'omez, Ricardo and Montellano-Ballesteros, Juan},
title = {Independent transversals of longest paths in locally semicomplete and locally transitive digraphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {469--480},
publisher = {mathdoc},
volume = {29},
number = {3},
year = {2009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a1/}
}
TY - JOUR AU - Galeana-Sánchez, Hortensia AU - Gómez, Ricardo AU - Montellano-Ballesteros, Juan TI - Independent transversals of longest paths in locally semicomplete and locally transitive digraphs JO - Discussiones Mathematicae. Graph Theory PY - 2009 SP - 469 EP - 480 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a1/ LA - en ID - DMGT_2009_29_3_a1 ER -
%0 Journal Article %A Galeana-Sánchez, Hortensia %A Gómez, Ricardo %A Montellano-Ballesteros, Juan %T Independent transversals of longest paths in locally semicomplete and locally transitive digraphs %J Discussiones Mathematicae. Graph Theory %D 2009 %P 469-480 %V 29 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a1/ %G en %F DMGT_2009_29_3_a1
Galeana-Sánchez, Hortensia; Gómez, Ricardo; Montellano-Ballesteros, Juan. Independent transversals of longest paths in locally semicomplete and locally transitive digraphs. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 3, pp. 469-480. http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a1/