Independent transversals of longest paths in locally semicomplete and locally transitive digraphs
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 3, pp. 469-480

Voir la notice de l'article provenant de la source Library of Science

We present several results concerning the Laborde-Payan-Xuang conjecture stating that in every digraph there exists an independent set of vertices intersecting every longest path. The digraphs we consider are defined in terms of local semicompleteness and local transitivity. We also look at oriented graphs for which the length of a longest path does not exceed 4.
Keywords: independent set, longest path, locally semicomplete, locally transitive
@article{DMGT_2009_29_3_a1,
     author = {Galeana-S\'anchez, Hortensia and G\'omez, Ricardo and Montellano-Ballesteros, Juan},
     title = {Independent transversals of longest paths in locally semicomplete and locally transitive digraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {469--480},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a1/}
}
TY  - JOUR
AU  - Galeana-Sánchez, Hortensia
AU  - Gómez, Ricardo
AU  - Montellano-Ballesteros, Juan
TI  - Independent transversals of longest paths in locally semicomplete and locally transitive digraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2009
SP  - 469
EP  - 480
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a1/
LA  - en
ID  - DMGT_2009_29_3_a1
ER  - 
%0 Journal Article
%A Galeana-Sánchez, Hortensia
%A Gómez, Ricardo
%A Montellano-Ballesteros, Juan
%T Independent transversals of longest paths in locally semicomplete and locally transitive digraphs
%J Discussiones Mathematicae. Graph Theory
%D 2009
%P 469-480
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a1/
%G en
%F DMGT_2009_29_3_a1
Galeana-Sánchez, Hortensia; Gómez, Ricardo; Montellano-Ballesteros, Juan. Independent transversals of longest paths in locally semicomplete and locally transitive digraphs. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 3, pp. 469-480. http://geodesic.mathdoc.fr/item/DMGT_2009_29_3_a1/