Minimum vertex ranking spanning tree problem for chordal and proper interval graphs
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 253-261

Voir la notice de l'article provenant de la source Library of Science

A vertex k-ranking of a simple graph is a coloring of its vertices with k colors in such a way that each path connecting two vertices of the same color contains a vertex with a bigger color. Consider the minimum vertex ranking spanning tree (MVRST) problem where the goal is to find a spanning tree of a given graph G which has a vertex ranking using the minimal number of colors over vertex rankings of all spanning trees of G. K. Miyata et al. proved in [NP-hardness proof and an approximation algorithm for the minimum vertex ranking spanning tree problem, Discrete Appl. Math. 154 (2006) 2402-2410] that the decision problem: given a simple graph G, decide whether there exists a spanning tree T of G such that T has a vertex 4-ranking, is NP-complete. In this paper we improve this result by proving NP-hardness of finding for a given chordal graph its spanning tree having vertex 3-ranking. This bound is the best possible. On the other hand we prove that MVRST problem can be solved in linear time for proper interval graphs.
Keywords: computational complexity, vertex ranking, spanning tree
@article{DMGT_2009_29_2_a3,
     author = {Dereniowski, Dariusz},
     title = {Minimum vertex ranking spanning tree problem for chordal and proper interval graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {253--261},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a3/}
}
TY  - JOUR
AU  - Dereniowski, Dariusz
TI  - Minimum vertex ranking spanning tree problem for chordal and proper interval graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2009
SP  - 253
EP  - 261
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a3/
LA  - en
ID  - DMGT_2009_29_2_a3
ER  - 
%0 Journal Article
%A Dereniowski, Dariusz
%T Minimum vertex ranking spanning tree problem for chordal and proper interval graphs
%J Discussiones Mathematicae. Graph Theory
%D 2009
%P 253-261
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a3/
%G en
%F DMGT_2009_29_2_a3
Dereniowski, Dariusz. Minimum vertex ranking spanning tree problem for chordal and proper interval graphs. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 253-261. http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a3/