Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2009_29_2_a14, author = {Muthu, Rahul and Narayanan, N. and Subramanian, C.}, title = {On k-intersection edge colourings}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {411--418}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a14/} }
TY - JOUR AU - Muthu, Rahul AU - Narayanan, N. AU - Subramanian, C. TI - On k-intersection edge colourings JO - Discussiones Mathematicae. Graph Theory PY - 2009 SP - 411 EP - 418 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a14/ LA - en ID - DMGT_2009_29_2_a14 ER -
Muthu, Rahul; Narayanan, N.; Subramanian, C. On k-intersection edge colourings. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 411-418. http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a14/
[1] N. Alon and B. Mohar, Chromatic number of graph powers, Combinatorics Probability and Computing 11 (2002) 1-10, doi: 10.1017/S0963548301004965.
[2] N. Alon and J. Spencer, The Probabilistic Method (John Wiley, 2000).
[3] A.C. Burris and R.H. Schelp, Vertex-distinguishing proper edge colourings, J. Graph Theory 26 (1997) 70-82, doi: 10.1002/(SICI)1097-0118(199710)26:273::AID-JGT2>3.0.CO;2-C
[4] P. Erdös and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions, in: Infinite and Finite Sets, 1975.
[5] S.T. McCormick, Optimal approximation of sparse Hessians and its equivalence to a graph colouring problem, Mathematical Programming 26 (1983) 153-171, doi: 10.1007/BF02592052.
[6] M. Molloy and B. Reed, Graph Coloring and the Probabilistic Method (Springer, Algorithms and Combinatorics, 2002).
[7] R. Motwani and P. Raghavan, Randomized Algorithms (Cambridge University Press, 1995).
[8] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Metody Diskret. Analys. (1964) 25-30.