On k-intersection edge colourings
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 411-418.

Voir la notice de l'article provenant de la source Library of Science

We propose the following problem. For some k ≥ 1, a graph G is to be properly edge coloured such that any two adjacent vertices share at most k colours. We call this the k-intersection edge colouring. The minimum number of colours sufficient to guarantee such a colouring is the k-intersection chromatic index and is denoted χ'ₖ(G). Let fₖ be defined by
Keywords: graph theory, k-intersection edge colouring, probabilistic method
@article{DMGT_2009_29_2_a14,
     author = {Muthu, Rahul and Narayanan, N. and Subramanian, C.},
     title = {On k-intersection edge colourings},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {411--418},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a14/}
}
TY  - JOUR
AU  - Muthu, Rahul
AU  - Narayanan, N.
AU  - Subramanian, C.
TI  - On k-intersection edge colourings
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2009
SP  - 411
EP  - 418
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a14/
LA  - en
ID  - DMGT_2009_29_2_a14
ER  - 
%0 Journal Article
%A Muthu, Rahul
%A Narayanan, N.
%A Subramanian, C.
%T On k-intersection edge colourings
%J Discussiones Mathematicae. Graph Theory
%D 2009
%P 411-418
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a14/
%G en
%F DMGT_2009_29_2_a14
Muthu, Rahul; Narayanan, N.; Subramanian, C. On k-intersection edge colourings. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 2, pp. 411-418. http://geodesic.mathdoc.fr/item/DMGT_2009_29_2_a14/

[1] N. Alon and B. Mohar, Chromatic number of graph powers, Combinatorics Probability and Computing 11 (2002) 1-10, doi: 10.1017/S0963548301004965.

[2] N. Alon and J. Spencer, The Probabilistic Method (John Wiley, 2000).

[3] A.C. Burris and R.H. Schelp, Vertex-distinguishing proper edge colourings, J. Graph Theory 26 (1997) 70-82, doi: 10.1002/(SICI)1097-0118(199710)26:273::AID-JGT2>3.0.CO;2-C

[4] P. Erdös and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions, in: Infinite and Finite Sets, 1975.

[5] S.T. McCormick, Optimal approximation of sparse Hessians and its equivalence to a graph colouring problem, Mathematical Programming 26 (1983) 153-171, doi: 10.1007/BF02592052.

[6] M. Molloy and B. Reed, Graph Coloring and the Probabilistic Method (Springer, Algorithms and Combinatorics, 2002).

[7] R. Motwani and P. Raghavan, Randomized Algorithms (Cambridge University Press, 1995).

[8] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Metody Diskret. Analys. (1964) 25-30.