Equitable coloring of Kneser graphs
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 1, pp. 119-142.

Voir la notice de l'article provenant de la source Library of Science

The Kneser graph K(n,k) is the graph whose vertices correspond to k-element subsets of set 1,2,...,n and two vertices are adjacent if and only if they represent disjoint subsets. In this paper we study the problem of equitable coloring of Kneser graphs, namely, we establish the equitable chromatic number for graphs K(n,2) and K(n,3). In addition, for sufficiently large n, a tight upper bound on equitable chromatic number of graph K(n,k) is given. Finally, the cases of K(2k,k) and K(2k+1,k) are discussed.
Keywords: equitable coloring, Kneser graph
@article{DMGT_2009_29_1_a7,
     author = {Fidytek, Robert and Furma\'nczyk, Hanna and \.Zyli\'nski, Pawe{\l}},
     title = {Equitable coloring of {Kneser} graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {119--142},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a7/}
}
TY  - JOUR
AU  - Fidytek, Robert
AU  - Furmańczyk, Hanna
AU  - Żyliński, Paweł
TI  - Equitable coloring of Kneser graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2009
SP  - 119
EP  - 142
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a7/
LA  - en
ID  - DMGT_2009_29_1_a7
ER  - 
%0 Journal Article
%A Fidytek, Robert
%A Furmańczyk, Hanna
%A Żyliński, Paweł
%T Equitable coloring of Kneser graphs
%J Discussiones Mathematicae. Graph Theory
%D 2009
%P 119-142
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a7/
%G en
%F DMGT_2009_29_1_a7
Fidytek, Robert; Furmańczyk, Hanna; Żyliński, Paweł. Equitable coloring of Kneser graphs. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 1, pp. 119-142. http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a7/

[1] A.J.W. Hilton and E.C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. 18 (1967) 369-384, doi: 10.1093/qmath/18.1.369.

[2] H. Furmańczyk, Equitable coloring of graphs, in: Graph Colorings, ed. M. Kubale, Contemporary Mathematics 352, AMS, Ann Arbor (2004) 35-53.

[3] H. Hajiabolhassan and X. Zhu, Circular chromatic number of Kneser graphs, J. Combin. Theory (B) 88 (2003) 299-303, doi: 10.1016/S0095-8956(03)00032-7.

[4] A. Johnson, F.C. Holroyd and S. Stahl, Multichromatic numbers, star chromatic numbers and Kneser graphs, J. Graph Theory 26 (1997) 137-145, doi: 10.1002/(SICI)1097-0118(199711)26:3137::AID-JGT4>3.0.CO;2-S

[5] M. Kneser, Aufgabe 360, Jahresbericht der Deutschen Mathematiker-Vereinigung 2, Abteilung 58 (1955), pp. 27.

[6] K.W. Lih and D.F. Liu, Circular chromatic numbers of some reduced Kneser graphs, J. Graph Theory 41 (2002) 62-68, doi: 10.1002/jgt.10052.

[7] Z. Lonc, Decompositions of hypergraphs into hyperstars, Discrete Math. 66 (1987) 157-168, doi: 10.1016/0012-365X(87)90128-2.

[8] L. Lovasz, Kneser's conjecture, chromatic number and homotopy, J. Combin. Theory (A) 25 (1978) 319-324, doi: 10.1016/0097-3165(78)90022-5.

[9] W. Meyer, Equitable coloring, Amer. Math. Monthly 80 (1973) 920-922, doi: 10.2307/2319405.

[10] A. Schrijver, Vertex-critical subgraphs of Kneser graphs, Nieuw Arch Wiskd. III Ser 26 (1978) 454-461.

[11] S. Stahl, n-tuple colourings and associated graphs, J. Combin. Theory (B) 20 (1976) 185-203, doi: 10.1016/0095-8956(76)90010-1.

[12] S. Stahl, The multichromatic numbers of some Kneser graphs, Discrete Math. 185 (1998) 287-291, doi: 10.1016/S0012-365X(97)00211-2.

[13] A. Vince, Star chromatic number, J. Graph Theory 12 (1988), 551-559, doi: 10.1002/jgt.3190120411.