Decompositions of quadrangle-free planar graphs
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 1, pp. 87-99.

Voir la notice de l'article provenant de la source Library of Science

W. He et al. showed that a planar graph not containing 4-cycles can be decomposed into a forest and a graph with maximum degree at most 7. This degree restriction was improved to 6 by Borodin et al. We further lower this bound to 5 and show that it cannot be improved to 3.
Keywords: planar graphs, graph decompositions, quadrangle-free graphs
@article{DMGT_2009_29_1_a5,
     author = {Borodin, Oleg and Ivanova, Anna and Kostochka, Alexandr and Sheikh, Naeem},
     title = {Decompositions of quadrangle-free planar graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {87--99},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a5/}
}
TY  - JOUR
AU  - Borodin, Oleg
AU  - Ivanova, Anna
AU  - Kostochka, Alexandr
AU  - Sheikh, Naeem
TI  - Decompositions of quadrangle-free planar graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2009
SP  - 87
EP  - 99
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a5/
LA  - en
ID  - DMGT_2009_29_1_a5
ER  - 
%0 Journal Article
%A Borodin, Oleg
%A Ivanova, Anna
%A Kostochka, Alexandr
%A Sheikh, Naeem
%T Decompositions of quadrangle-free planar graphs
%J Discussiones Mathematicae. Graph Theory
%D 2009
%P 87-99
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a5/
%G en
%F DMGT_2009_29_1_a5
Borodin, Oleg; Ivanova, Anna; Kostochka, Alexandr; Sheikh, Naeem. Decompositions of quadrangle-free planar graphs. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 1, pp. 87-99. http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a5/

[1] A. Bassa, J. Burns, J. Campbell, A. Deshpande, J. Farley, M. Halsey, S. Michalakis, P.-O. Persson, P. Pylyavskyy, L. Rademacher, A. Riehl, M. Rios, J. Samuel, B. Tenner, A. Vijayasaraty, L. Zhao and D. J. Kleitman, Partitioning a planar graph of girth ten into a forest and a matching, manuscript (2004).

[2] O.V. Borodin, Consistent colorings of graphs on the plane, Diskret. Analiz 45 (1987) 21-27 (in Russian).

[3] O. Borodin, A. Kostochka, N. Sheikh and G. Yu, Decomposing a planar graph with girth nine into a forest and a matching, European Journal of Combinatorics 29 (2008) 1235-1241, doi: 10.1016/j.ejc.2007.06.020.

[4] O. Borodin, A. Kostochka, N. Sheikh and G. Yu, M-degrees of quadrangle-free planar graphs, J. Graph Theory 60 (2009) 80-85, doi: 10.1002/jgt.20346.

[5] W. He, X. Hou, K.W. Lih, J. Shao, W. Wang and X. Zhu, Edge-partitions of planar graphs and their game coloring numbers, J. Graph Theory 41 (2002) 307-317, doi: 10.1002/jgt.10069.

[6] D.J. Kleitman, Partitioning the edges of a girth 6 planar graph into those of a forest and those of a set of disjoint paths and cycles, manuscript.