Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2009_29_1_a2, author = {Galeana-Sanchez, Hortensia and Pastrana, Laura}, title = {k-Kernels and some operations in digraphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {39--49}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a2/} }
TY - JOUR AU - Galeana-Sanchez, Hortensia AU - Pastrana, Laura TI - k-Kernels and some operations in digraphs JO - Discussiones Mathematicae. Graph Theory PY - 2009 SP - 39 EP - 49 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a2/ LA - en ID - DMGT_2009_29_1_a2 ER -
Galeana-Sanchez, Hortensia; Pastrana, Laura. k-Kernels and some operations in digraphs. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 1, pp. 39-49. http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a2/
[1] C. Berge, Graphs (North-Holland Mathematical Library, 6 North Holland, Amsterdam, 1985).
[2] P. Duchet, Graphes noyau-parfaits, Ann. Discrete Math. 9 (1980) 93-101, doi: 10.1016/S0167-5060(08)70041-4.
[3] P. Duchet, A sufficient condition for a digraph to be kernel-perfect, J. Graph Theory 11 (1987) 81-85, doi: 10.1002/jgt.3190110112.
[4] P. Duchet and H. Meyniel, A note on kernel-critical graphs, Discrete Math. 33 (1981) 103-105, doi: 10.1016/0012-365X(81)90264-8.
[5] H. Galeana-Sánchez, On the existence of (k,l)-kernels in digraphs, Discrete Math. 85 (1990) 99-102, doi: 10.1016/0012-365X(90)90167-G.
[6] H. Galeana-Sánchez, On the existence of kernels and h-kernels in directed graphs, Discrete Math. 110 (1992) 251-255, doi: 10.1016/0012-365X(92)90713-P.
[7] H. Galeana-Sánchez and V. Neumann-Lara, On kernel-perfect critical digraphs, Discrete Math. 59 (1986) 257-265, doi: 10.1016/0012-365X(86)90172-X.
[8] H. Galeana-Sánchez and V. Neumann-Lara, Extending kernel perfect digraphs to kernel perfect critical digraphs, Discrete Math. 94 (1991) 181-187, doi: 10.1016/0012-365X(91)90023-U.
[9] M. Harminc, On the (m,n)-basis of a digraph, Math. Slovaca 30 (1980) 401-404.
[10] M. Harminc, Solutions and kernels of a directed graph, Math. Slovaca 32 (1982) 262-267.
[11] M. Harminc and T. Olejníková, Binary operations on directed graphs and their solutions (Slovak with English and Russian summaries), Zb. Ved. Pr. VST, Košice (1984) 29-42.
[12] M. Kucharska, On (k,l)-kernels of orientations of special graphs, Ars Combinatoria 60 (2001) 137-147.
[13] M. Kucharska and M. Kwaśnik, On (k,l)-kernels of superdigraphs of Pₘ and Cₘ, Discuss. Math. Graph Theory 21 (2001) 95-109, doi: 10.7151/dmgt.1135.
[14] M. Kwaśnik, The generalization of Richardson theorem, Discuss. Math. IV (1981) 11-13.
[15] M. Kwaśnik, On (k,l)-kernels of exclusive disjunction, Cartesian sum and normal product of two directed graphs, Discuss. Math. V (1982) 29-34.
[16] M. Blidia, P. Duchet, H. Jacob, F. Maffray and H. Meyniel, Some operations preserving the existence of kernels, Discrete Math. 205 (1999) 211-216, doi: 10.1016/S0012-365X(99)00026-6.
[17] M. Richardson, Extensions theorems for solutions of irreflexive relations, Proc. Mat. Acad. Sci. 39 (1953) 649-655, doi: 10.1073/pnas.39.7.649.
[18] M. Richardson, Solutions of irreflexive relations, Ann. Math. 58 (1953) 573-590, doi: 10.2307/1969755.
[19] J. Topp, Kernels of digraphs formed by some unary operations from other digraphs, J. Rostock Math. Kolloq. 21 (1982) 73-81.
[20] J. von Neumann and O. Morgenstern, Theory of games and economic behavior (Princeton University Press, Princeton, 1944).
[21] A. Włoch and I. Włoch, On (k,l)-kernels in generalized products, Discrete Math. 164 (1997) 295-301, doi: 10.1016/S0012-365X(96)00064-7.