Quasiperfect domination in triangular lattices
Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 1, pp. 179-198.

Voir la notice de l'article provenant de la source Library of Science

A vertex subset S of a graph G is a perfect (resp. quasiperfect) dominating set in G if each vertex v of G∖S is adjacent to only one vertex (d_v ∈ 1,2 vertices) of S. Perfect and quasiperfect dominating sets in the regular tessellation graph of Schläfli symbol 3,6 and in its toroidal quotients are investigated, yielding the classification of their perfect dominating sets and most of their quasiperfect dominating sets S with induced components of the form K_ν, where ν ∈ 1,2,3 depends only on S.
Keywords: perfect dominating set, quasiperfect dominating set, triangular lattice
@article{DMGT_2009_29_1_a10,
     author = {Dejter, Italo},
     title = {Quasiperfect domination in triangular lattices},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {179--198},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a10/}
}
TY  - JOUR
AU  - Dejter, Italo
TI  - Quasiperfect domination in triangular lattices
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2009
SP  - 179
EP  - 198
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a10/
LA  - en
ID  - DMGT_2009_29_1_a10
ER  - 
%0 Journal Article
%A Dejter, Italo
%T Quasiperfect domination in triangular lattices
%J Discussiones Mathematicae. Graph Theory
%D 2009
%P 179-198
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a10/
%G en
%F DMGT_2009_29_1_a10
Dejter, Italo. Quasiperfect domination in triangular lattices. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 1, pp. 179-198. http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a10/

[1] D.W. Bange, A.E. Barkauskas and P.J. Slater, Efficient dominating sets in graphs, Appl. Discrete Math, eds. R.D. Ringeisen and F.S. Roberts (SIAM, Philadelphia, 1988) 189-199.

[2] I.J. Dejter, Perfect domination of regular grid graphs, Australasian J. Combin. 92 (2008) 99-114.

[3] I.J. Dejter and A.A. Delgado, Perfect dominating sets in grid graphs, JCMCC 70 (2009), to appear.

[4] L. Fejes Tóth, Regular Figures (Pergamon Press, Oxford UK, 1964).

[5] J. Kratochvil and M. Krivánek, On the Computational Complexity of Codes in Graphs, in: Proc. MFCS 1988, LNCS 324 (Springer-Verlag), 396-404.

[6] C. Thomassen, On the Nelson unit distance coloring problem, Amer. Math. Monthly 106 (1999) 850-853, doi: 10.2307/2589618.