Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2009_29_1_a1, author = {Aouchiche, Mustapha and Hansen, Pierre and Stevanovi\'c, Dragan}, title = {Variable neighborhood search for extremal graphs. 17. {Further} conjectures and results about the index}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {15--37}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a1/} }
TY - JOUR AU - Aouchiche, Mustapha AU - Hansen, Pierre AU - Stevanović, Dragan TI - Variable neighborhood search for extremal graphs. 17. Further conjectures and results about the index JO - Discussiones Mathematicae. Graph Theory PY - 2009 SP - 15 EP - 37 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a1/ LA - en ID - DMGT_2009_29_1_a1 ER -
%0 Journal Article %A Aouchiche, Mustapha %A Hansen, Pierre %A Stevanović, Dragan %T Variable neighborhood search for extremal graphs. 17. Further conjectures and results about the index %J Discussiones Mathematicae. Graph Theory %D 2009 %P 15-37 %V 29 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a1/ %G en %F DMGT_2009_29_1_a1
Aouchiche, Mustapha; Hansen, Pierre; Stevanović, Dragan. Variable neighborhood search for extremal graphs. 17. Further conjectures and results about the index. Discussiones Mathematicae. Graph Theory, Tome 29 (2009) no. 1, pp. 15-37. http://geodesic.mathdoc.fr/item/DMGT_2009_29_1_a1/
[1] M. Aouchiche, Comparaison Automatisée d'Invariants en Théorie des Graphes, PhD Thesis (French), École Polytechnique de Montréal, February 2006, available at http://www.gerad.ca/∼agx/.
[2] M. Aouchiche, J.-M. Bonnefoy, A. Fidahoussen, G. Caporossi, P. Hansen, L. Hiesse, J. Lacheré and A. Monhait, Variable neighborhood search for extremal graphs, 14. The AutoGraphiX 2 System, in: L. Liberti and N. Maculan (eds), Global Optimization: From Theory to Implementation (Springer, 2006) 281-310.
[3] M. Aouchiche, G. Caporossi and P. Hansen, Variable neighborhood search for extremal graphs, 20. Automated comparison of graph invariants, MATCH Commun. Math. Comput. Chem. 58 (2007) 365-384.
[4] M. Aouchiche, F.K. Bell, D. Cvetković, P. Hansen, P. Rowlinson, S. Simić and D. Stevanović, Variable neighborhood search for extremal graphs, 16. Some conjectures related to the largest eigenvalue of a graph, European J. Oper. Res. 191 (2008) 661-676, doi: 10.1016/j.ejor.2006.12.059.
[5] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).
[6] R.C. Brigham and R.D. Dutton, A compilation of relations between graph invariants, Networks 15 (1985) 73-107, doi: 10.1002/net.3230150108.
[7] G. Caporossi and P. Hansen, Variable neighborhood search for extremal graphs, I. The AutoGraphiX System, Discrete Math. 212 (2000) 29-44, doi: 10.1016/S0012-365X(99)00206-X.
[8] G. Caporossi and P. Hansen, Variable neighborhood search for extremal graphs, V. Three ways to automate finding conjectures, Discrete Math. 276 (2004) 81-94, doi: 10.1016/S0012-365X(03)00311-X.
[9] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs-Theory and Applications, 3rd edition (Johann Ambrosius Barth Verlag, Heidelberg-Leipzig, 1995).
[10] E. DeLaVina, Some history of the development of graffiti, in [11], pp. 81-118.
[11] S. Fajtlowicz, P. Fowler, P. Hansen, M. Janowitz and F. Roberts, Graphs and Discovery, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 69 (AMS, Providence, RI, 2005).
[12] L. Feng, Q. Li and X.-D. Zhang, Minimizing the Laplacian eigenvalues for trees with given domination number, Linear Algebra Appl. 419 (2006) 648-655, doi: 10.1016/j.laa.2006.06.008.
[13] L. Feng, Q. Li and X.-D. Zhang, Spectral radii of graphs with given chromatic number, Applied Math. Lett. 20 (2007) 158-162, doi: 10.1016/j.aml.2005.11.030.
[14] P. Hansen, Computers in graph theory, Graph Theory Notes of New York 43 (2002) 20-34.
[15] P. Hansen, How far is, should and could be conjecture-making in graph theory an automated process? in [11], pp. 189-230.
[16] P. Hansen, M. Aouchiche, G. Caporossi, H. Mélot and D. Stevanović, What forms do interesting conjectures have in graph theory? in [11], pp. 231-252.
[17] P. Hansen and D. Stevanović, On bags and bugs, Electronic Notes in Discrete Math. 19 (2005) 111-116, full version accepted for publication in Discrete Appl. Math, doi: 10.1016/j.endm.2005.05.016.
[18] A. Hoffman, On Limit Points of Spectral Radii of non-Negative Symmetric Integral Matrices, in: Graph Theory and Applications (Lecture Notes in Mathematics 303, eds. Y. Alavi, D.R. Lick, A.T. White), (Springer-Verlag, Berlin-Heidelberg-New York, 165-172).
[19] Y. Hong, A bound on the spectral radius of graphs, Linear Algebra Appl. 108 (1988) 135-139, doi: 10.1016/0024-3795(88)90183-8.
[20] Y. Hong, Bounds of eigenvalues of graphs, Discrete Math. 123 (1993) 65-74, doi: 10.1016/0012-365X(93)90007-G.
[21] L. Lovász and J. Pelikán, On the eigenvalues of trees, Periodica Math. Hung. 3 (1973) 175-182, doi: 10.1007/BF02018473.
[22] N. Mladenović and P. Hansen, Variable neighborhood search, Comput. Oper. Res. 24 (1997) 1097-1100, doi: 10.1016/S0305-0548(97)00031-2.
[23] O. Ore, Theory of graphs, Amer. Math. Soc. Colloq. Publ. 38 (1962).
[24] P. Rowlinson, On the maximal index of graphs with a prescribed number of edges, Linear Algebra Appl. 110 (1988) 43-53, doi: 10.1016/0024-3795(83)90131-3.
[25] L. Soltés, Transmission in graphs: a bound and vertex removing, Math. Slovaca 41 (1991) 11-16.
[26] R.P. Stanley, A bound on the spectral radius of a graph with e edges, Linear Algebra Appl. 87 (1987) 267-269, doi: 10.1016/0024-3795(87)90172-8.
[27] H.S. Wilf, The eigenvalues of a graph and its chromatic number, J. London Math. Soc. 42 (1967) 330-332, doi: 10.1112/jlms/s1-42.1.330.