The signed matchings in graphs
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 477-486.

Voir la notice de l'article provenant de la source Library of Science

Let G be a graph with vertex set V(G) and edge set E(G). A signed matching is a function x: E(G) → -1,1 satisfying ∑_e ∈ E_G(v) x(e) ≤ 1 for every v ∈ V(G), where E_G(v) = uv ∈ E(G)| u ∈ V(G). The maximum of the values of ∑_e ∈ E(G) x(e), taken over all signed matchings x, is called the signed matching number and is denoted by β'₁(G). In this paper, we study the complexity of the maximum signed matching problem. We show that a maximum signed matching can be found in strongly polynomial-time. We present sharp upper and lower bounds on β'₁(G) for general graphs. We investigate the sum of maximum size of signed matchings and minimum size of signed 1-edge covers. We disprove the existence of an analogue of Gallai's theorem. Exact values of β'₁(G) of several classes of graphs are found.
Keywords: signed matching, signed matching number, maximum signed matching, signed edge cover, signed edge cover number, strongly polynomial-time
@article{DMGT_2008_28_3_a7,
     author = {Wang, Changping},
     title = {The signed matchings in graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {477--486},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a7/}
}
TY  - JOUR
AU  - Wang, Changping
TI  - The signed matchings in graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 477
EP  - 486
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a7/
LA  - en
ID  - DMGT_2008_28_3_a7
ER  - 
%0 Journal Article
%A Wang, Changping
%T The signed matchings in graphs
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 477-486
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a7/
%G en
%F DMGT_2008_28_3_a7
Wang, Changping. The signed matchings in graphs. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 477-486. http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a7/

[1] R.P. Anstee, A polynomial algorithm for b-matchings: an alternative approach, Inform. Process. Lett. 24 (1987) 153-157, doi: 10.1016/0020-0190(87)90178-5.

[2] A. Bonato, K. Cameron and C. Wang, Signed b-edge covers of graphs, submitted.

[3] G. Chartrand and L. Lesniak, Graphs Digraphs, third edition (Chapman and Hall, Boca Raton, 2000).

[4] W. Chena and E. Song, Lower bounds on several versions of signed domination number, Discrete Math. 308 (2008) 1837-1846, doi: 10.1016/j.disc.2006.09.050.

[5] S. Goodman, S. Hedetniemi and R.E. Tarjan, b-matchings in trees, SIAM J. Comput. 5 (1976) 104-108, doi: 10.1137/0205009.

[6] D. Hausmann, Adjacent vertices on the b-matching polyhedron, Discrete Math. 33 (1981) 37-51, doi: 10.1016/0012-365X(81)90256-9.

[7] H. Karami, S.M. Sheikholeslami and A. Khodkar, Some notes on signed edge domination in graphs, Graphs and Combin. 24 (2008) 29-35, doi: 10.1007/s00373-007-0762-8.

[8] W.R. Pulleyblank, Total dual integrality and b-matchings, Oper. Res. Lett. 1 (1981/82) 28-33, doi: 10.1016/0167-6377(81)90021-3.

[9] A. Schrijver, Combinatorial Optimization: polyhedra and efficiency (Berlin, Springer, 2004).

[10] C. Wang, The signed star domination numbers of the Cartesian product graphs, Discrete Appl. Math. 155 (2007) 1497-1505, doi: 10.1016/j.dam.2007.04.008.

[11] B. Xu, On signed edge domination numbers of graphs, Discrete Math. 239 (2001) 179-189, doi: 10.1016/S0012-365X(01)00044-9.

[12] B. Xu, Note On edge domination numbers of graphs, Discrete Math. 294 (2005) 311-316, doi: 10.1016/j.disc.2004.11.008.

[13] B. Xu, Two classes of edge domination in graphs, Discrete Appl. Math. 154 (2006) 1541-1546, doi: 10.1016/j.dam.2005.12.007.