Embedding complete ternary trees into hypercubes
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 463-476.

Voir la notice de l'article provenant de la source Library of Science

We inductively describe an embedding of a complete ternary tree Tₕ of height h into a hypercube Q of dimension at most ⎡(1.6)h⎤+1 with load 1, dilation 2, node congestion 2 and edge congestion 2. This is an improvement over the known embedding of Tₕ into Q. And it is very close to a conjectured embedding of Havel [3] which states that there exists an embedding of Tₕ into its optimal hypercube with load 1 and dilation 2. The optimal hypercube has dimension ⎡(log₂3)h⎤ ( = ⎡(1.585)h⎤) or ⎡(log₂3)h⎤+1.
Keywords: complete ternary trees, hypercube, interconnection network, embedding, dilation, node congestion, edge congestion
@article{DMGT_2008_28_3_a6,
     author = {Choudum, S. and Lavanya, S.},
     title = {Embedding complete ternary trees into hypercubes},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {463--476},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a6/}
}
TY  - JOUR
AU  - Choudum, S.
AU  - Lavanya, S.
TI  - Embedding complete ternary trees into hypercubes
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 463
EP  - 476
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a6/
LA  - en
ID  - DMGT_2008_28_3_a6
ER  - 
%0 Journal Article
%A Choudum, S.
%A Lavanya, S.
%T Embedding complete ternary trees into hypercubes
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 463-476
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a6/
%G en
%F DMGT_2008_28_3_a6
Choudum, S.; Lavanya, S. Embedding complete ternary trees into hypercubes. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 463-476. http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a6/

[1] S.L. Bezrukov, Embedding complete trees into the hypercube, Discrete Math. 110 (2001) 101-119, doi: 10.1016/S0166-218X(00)00256-0.

[2] A.K. Gupta, D. Nelson and H. Wang, Efficient embeddings of ternary trees into hypercubes, Journal of Parallel and Distributed Computing 63 (2003) 619-629, doi: 10.1016/S0743-7315(03)00037-6.

[3] I. Havel, On certain trees in hypercube, in: R. Bodendick and R. Henn, eds, Topics in Combinatorics and Graph Theory (Physica-Verlag, Heidelberg, 1990) 353-358.

[4] X.J. Shen, Q. Hu and W.F. Liang, Embedding k-ary complete trees into hypercubes, Journal of Parallel and Distributed Computing 24 (1995) 100-106, doi: 10.1006/jpdc.1995.1010.

[5] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes (Morgan Kauffmann, San Mateo, CA, 1992).

[6] B. Monien and H. Sudbourough, Embedding one interconnection network into another, Computing Supplementary 7 (1990) 257-282.

[7] J. Trdlicka and P. Tvrdík, Embedding of k-ary complete trees into hypercubes with uniform load, Journal of Parallel and Distributed Computing 52 (1998) 120-131, doi: 10.1006/jpdc.1998.1464.

[8] A.Y. Wu, Embedding of tree networks in hypercube, Journal of Parallel and Distributed Computing 2 (1985) 238-249, doi: 10.1016/0743-7315(85)90026-7.