Embedding complete ternary trees into hypercubes
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 463-476

Voir la notice de l'article provenant de la source Library of Science

We inductively describe an embedding of a complete ternary tree Tₕ of height h into a hypercube Q of dimension at most ⎡(1.6)h⎤+1 with load 1, dilation 2, node congestion 2 and edge congestion 2. This is an improvement over the known embedding of Tₕ into Q. And it is very close to a conjectured embedding of Havel [3] which states that there exists an embedding of Tₕ into its optimal hypercube with load 1 and dilation 2. The optimal hypercube has dimension ⎡(log₂3)h⎤ ( = ⎡(1.585)h⎤) or ⎡(log₂3)h⎤+1.
Keywords: complete ternary trees, hypercube, interconnection network, embedding, dilation, node congestion, edge congestion
@article{DMGT_2008_28_3_a6,
     author = {Choudum, S. and Lavanya, S.},
     title = {Embedding complete ternary trees into hypercubes},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {463--476},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a6/}
}
TY  - JOUR
AU  - Choudum, S.
AU  - Lavanya, S.
TI  - Embedding complete ternary trees into hypercubes
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 463
EP  - 476
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a6/
LA  - en
ID  - DMGT_2008_28_3_a6
ER  - 
%0 Journal Article
%A Choudum, S.
%A Lavanya, S.
%T Embedding complete ternary trees into hypercubes
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 463-476
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a6/
%G en
%F DMGT_2008_28_3_a6
Choudum, S.; Lavanya, S. Embedding complete ternary trees into hypercubes. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 463-476. http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a6/