Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2008_28_3_a4, author = {Harant, Jochen and Jendrol', Stanislav and Walther, Hansjoachim}, title = {On long cycles through four prescribed vertices of a polyhedral graph}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {441--451}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a4/} }
TY - JOUR AU - Harant, Jochen AU - Jendrol', Stanislav AU - Walther, Hansjoachim TI - On long cycles through four prescribed vertices of a polyhedral graph JO - Discussiones Mathematicae. Graph Theory PY - 2008 SP - 441 EP - 451 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a4/ LA - en ID - DMGT_2008_28_3_a4 ER -
%0 Journal Article %A Harant, Jochen %A Jendrol', Stanislav %A Walther, Hansjoachim %T On long cycles through four prescribed vertices of a polyhedral graph %J Discussiones Mathematicae. Graph Theory %D 2008 %P 441-451 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a4/ %G en %F DMGT_2008_28_3_a4
Harant, Jochen; Jendrol', Stanislav; Walther, Hansjoachim. On long cycles through four prescribed vertices of a polyhedral graph. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 441-451. http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a4/
[1] T. Böhme, F. Göring and J. Harant, Menger's theorem, J. Graph Theory 37 (2001) 35-36, doi: 10.1002/jgt.1001.
[2] R. Diestel, Graph Theory (Springer, Graduate Texts in Mathematics 173, 2000).
[3] A.K. Kelmans and M.V. Lomonosov, When m vertices in a k-connected graph cannot be walked round along a simple cycle, Discrete Math. 38 (1982) 317-322, doi: 10.1016/0012-365X(82)90299-0.
[4] L. Lovász, Combinatorial problems and exercises (Akadémiai Kiadó, Budapest, Hungary 1979) Section 6, Problem 42.
[5] J.W. Moon and L. Moser, Simple paths on polyhedra, Pacific J. Math. 13 (1963) 629-631.
[6] A. Saito, Long cycles through specified vertices in a graph, J. Combin. Theory (B) 47 (1989) 220-230, doi: 10.1016/0095-8956(89)90021-X.
[7] W.T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956) 99-116, doi: 10.1090/S0002-9947-1956-0081471-8.
[8] W.T. Tutte, Bridges and Hamiltonian circuits in planar graphs, Aequationes Math. 15 (1977) 1-33, doi: 10.1007/BF01837870.