On long cycles through four prescribed vertices of a polyhedral graph
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 441-451.

Voir la notice de l'article provenant de la source Library of Science

For a 3-connected planar graph G with circumference c ≥ 44 it is proved that G has a cycle of length at least (1/36)c+(20/3) through any four vertices of G.
Keywords: graph, long cycle, prescribed vertices
@article{DMGT_2008_28_3_a4,
     author = {Harant, Jochen and Jendrol', Stanislav and Walther, Hansjoachim},
     title = {On long cycles through four prescribed vertices of a polyhedral graph},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {441--451},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a4/}
}
TY  - JOUR
AU  - Harant, Jochen
AU  - Jendrol', Stanislav
AU  - Walther, Hansjoachim
TI  - On long cycles through four prescribed vertices of a polyhedral graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 441
EP  - 451
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a4/
LA  - en
ID  - DMGT_2008_28_3_a4
ER  - 
%0 Journal Article
%A Harant, Jochen
%A Jendrol', Stanislav
%A Walther, Hansjoachim
%T On long cycles through four prescribed vertices of a polyhedral graph
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 441-451
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a4/
%G en
%F DMGT_2008_28_3_a4
Harant, Jochen; Jendrol', Stanislav; Walther, Hansjoachim. On long cycles through four prescribed vertices of a polyhedral graph. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 441-451. http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a4/

[1] T. Böhme, F. Göring and J. Harant, Menger's theorem, J. Graph Theory 37 (2001) 35-36, doi: 10.1002/jgt.1001.

[2] R. Diestel, Graph Theory (Springer, Graduate Texts in Mathematics 173, 2000).

[3] A.K. Kelmans and M.V. Lomonosov, When m vertices in a k-connected graph cannot be walked round along a simple cycle, Discrete Math. 38 (1982) 317-322, doi: 10.1016/0012-365X(82)90299-0.

[4] L. Lovász, Combinatorial problems and exercises (Akadémiai Kiadó, Budapest, Hungary 1979) Section 6, Problem 42.

[5] J.W. Moon and L. Moser, Simple paths on polyhedra, Pacific J. Math. 13 (1963) 629-631.

[6] A. Saito, Long cycles through specified vertices in a graph, J. Combin. Theory (B) 47 (1989) 220-230, doi: 10.1016/0095-8956(89)90021-X.

[7] W.T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956) 99-116, doi: 10.1090/S0002-9947-1956-0081471-8.

[8] W.T. Tutte, Bridges and Hamiltonian circuits in planar graphs, Aequationes Math. 15 (1977) 1-33, doi: 10.1007/BF01837870.