Triangle-free planar graphs with minimum degree 3 have radius at least 3
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 563-566
Cet article a éte moissonné depuis la source Library of Science
We prove that every triangle-free planar graph with minimum degree 3 has radius at least 3; equivalently, no vertex neighborhood is a dominating set.
Keywords:
planar graph, radius, minimum degree, triangle-free, dominating set
@article{DMGT_2008_28_3_a14,
author = {Kim, Seog-Jim and West, Douglas},
title = {Triangle-free planar graphs with minimum degree 3 have radius at least 3},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {563--566},
year = {2008},
volume = {28},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a14/}
}
TY - JOUR AU - Kim, Seog-Jim AU - West, Douglas TI - Triangle-free planar graphs with minimum degree 3 have radius at least 3 JO - Discussiones Mathematicae. Graph Theory PY - 2008 SP - 563 EP - 566 VL - 28 IS - 3 UR - http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a14/ LA - en ID - DMGT_2008_28_3_a14 ER -
Kim, Seog-Jim; West, Douglas. Triangle-free planar graphs with minimum degree 3 have radius at least 3. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 563-566. http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a14/
[1] P. Erdös, J. Pach, R. Pollack and Zs. Tuza, Radius, diameter, and minimum degree, J. Combin. Theory (B) 47 (1989) 73-79, doi: 10.1016/0095-8956(89)90066-X.
[2] J. Harant, An upper bound for the radius of a 3-connected planar graph with bounded faces, Contemporary methods in graph theory (Bibliographisches Inst., Mannheim, 1990), 353-358.
[3] J. Plesník, Critical graphs of given diameter, Acta Fac. Rerum Natur. Univ. Comenian. Math. 30 (1975) 71-93.