Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2008_28_3_a14, author = {Kim, Seog-Jim and West, Douglas}, title = {Triangle-free planar graphs with minimum degree 3 have radius at least 3}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {563--566}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a14/} }
TY - JOUR AU - Kim, Seog-Jim AU - West, Douglas TI - Triangle-free planar graphs with minimum degree 3 have radius at least 3 JO - Discussiones Mathematicae. Graph Theory PY - 2008 SP - 563 EP - 566 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a14/ LA - en ID - DMGT_2008_28_3_a14 ER -
Kim, Seog-Jim; West, Douglas. Triangle-free planar graphs with minimum degree 3 have radius at least 3. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 563-566. http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a14/
[1] P. Erdös, J. Pach, R. Pollack and Zs. Tuza, Radius, diameter, and minimum degree, J. Combin. Theory (B) 47 (1989) 73-79, doi: 10.1016/0095-8956(89)90066-X.
[2] J. Harant, An upper bound for the radius of a 3-connected planar graph with bounded faces, Contemporary methods in graph theory (Bibliographisches Inst., Mannheim, 1990), 353-358.
[3] J. Plesník, Critical graphs of given diameter, Acta Fac. Rerum Natur. Univ. Comenian. Math. 30 (1975) 71-93.