Path and cycle factors of cubic bipartite graphs
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 551-556.

Voir la notice de l'article provenant de la source Library of Science

For a set S of connected graphs, a spanning subgraph F of a graph is called an S-factor if every component of F is isomorphic to a member of S. It was recently shown that every 2-connected cubic graph has a Cₙ | n ≥ 4-factor and a Pₙ | n ≥ 6-factor, where Cₙ and Pₙ denote the cycle and the path of order n, respectively (Kawarabayashi et al., J. Graph Theory, Vol. 39 (2002) 188-193). In this paper, we show that every connected cubic bipartite graph has a Cₙ | n ≥ 6-factor, and has a Pₙ | n ≥ 8-factor if its order is at least 8.
Keywords: cycle factor, path factor, bipartite graph
@article{DMGT_2008_28_3_a12,
     author = {Kano, M. and Lee, Changwoo and Suzuki, Kazuhiro},
     title = {Path and cycle factors of cubic bipartite graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {551--556},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a12/}
}
TY  - JOUR
AU  - Kano, M.
AU  - Lee, Changwoo
AU  - Suzuki, Kazuhiro
TI  - Path and cycle factors of cubic bipartite graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 551
EP  - 556
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a12/
LA  - en
ID  - DMGT_2008_28_3_a12
ER  - 
%0 Journal Article
%A Kano, M.
%A Lee, Changwoo
%A Suzuki, Kazuhiro
%T Path and cycle factors of cubic bipartite graphs
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 551-556
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a12/
%G en
%F DMGT_2008_28_3_a12
Kano, M.; Lee, Changwoo; Suzuki, Kazuhiro. Path and cycle factors of cubic bipartite graphs. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 551-556. http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a12/

[1] J. Akiyama and M. Kano, Path factors of a graph, Graphs and applications (Boulder, Colo., 1982), 1-21, Wiley-Intersci. Publ., Wiley, New York, 1985.

[2] A. Kaneko, A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two, J. Combin. Theory (B) 88 (2003) 195-218, doi: 10.1016/S0095-8956(03)00027-3.

[3] M. Kano, G.Y. Katona and Z. Király, Packing paths of length at least two, Discrete Math. 283 (2004) 129-135, doi: 10.1016/j.disc.2004.01.016.

[4] K. Kawarabayashi, H. Matsuda, Y. Oda and K. Ota, Path factors in cubic graphs, J. Graph Theory 39 (2002) 188-193, doi: 10.1002/jgt.10022.

[5] J. Petersen, Die Theorie der regulären Graphen, Acta Math. 15 (1891) 193-220, doi: 10.1007/BF02392606.