Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2008_28_3_a11, author = {Orchel, Beata and Wojda, A.}, title = {Independent cycles and paths in bipartite balanced graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {535--549}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a11/} }
TY - JOUR AU - Orchel, Beata AU - Wojda, A. TI - Independent cycles and paths in bipartite balanced graphs JO - Discussiones Mathematicae. Graph Theory PY - 2008 SP - 535 EP - 549 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a11/ LA - en ID - DMGT_2008_28_3_a11 ER -
Orchel, Beata; Wojda, A. Independent cycles and paths in bipartite balanced graphs. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 535-549. http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a11/
[1] M. Aigner and S. Brandt, Embedding arbitrary graphs of maximum degree two, J. London Math. Soc. (2) 48 (1993) 39-51, doi: 10.1112/jlms/s2-48.1.39.
[2] D. Amar, I. Fournier and A. Germa, Covering the vertices of a graph by cycles of prescribed length, J. Graph Theory 13 (1989) 323-330, doi: 10.1002/jgt.3190130307.
[3] B. Bollobás, Extremal Graph Theory (Academic Press, London, 1978).
[4] P.A. Catlin, Subgraphs of graphs, I, Discrete Math. 10 (1974) 225-233, doi: 10.1016/0012-365X(74)90119-8.
[5] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta. Math. Acad. Sci. Hungar. 14 (1963) 423-439, doi: 10.1007/BF01895727.
[6] M. El-Zahar, On circuits in graphs, Discrete Math. 50 (1984) 227-230, doi: 10.1016/0012-365X(84)90050-5.
[7] J.-L. Fouquet and A.P. Wojda, Mutual placement of bipartite grahps, Discrete Math. 121 (1993) 85-92, doi: 10.1016/0012-365X(93)90540-A.
[8] L. Lesniak, Independent cycles in graphs, J. Comb. Math. Comb. Comput. 17 (1995) 55-63.
[9] B. Orchel, Placing bipartite graphs of small size I, Folia Scientarum Universitatis Technicae Resoviensis 118 (1993) 51-58.
[10] H. Wang, On the maximum number of independent cycles in a bipartite graph, J. Combin. Theory (B) 67 (1996) 152-164, doi: 10.1006/jctb.1996.0037.
[11] M. Woźniak, Packing of graphs (Dissertationes Mathematicae CCCLXII, Warszawa, 1997).
[12] H.P. Yap, Packing of graphs - a survey, Discrete Math. 72 (1988) 395-404, doi: 10.1016/0012-365X(88)90232-4.