A note on domination parameters in random graphs
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 335-343.

Voir la notice de l'article provenant de la source Library of Science

Domination parameters in random graphs G(n,p), where p is a fixed real number in (0,1), are investigated. We show that with probability tending to 1 as n → ∞, the total and independent domination numbers concentrate on the domination number of G(n,p).
Keywords: domination, random graphs, independent domination, total domination
@article{DMGT_2008_28_2_a8,
     author = {Bonato, Anthony and Wang, Changping},
     title = {A note on domination parameters in random graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {335--343},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a8/}
}
TY  - JOUR
AU  - Bonato, Anthony
AU  - Wang, Changping
TI  - A note on domination parameters in random graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 335
EP  - 343
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a8/
LA  - en
ID  - DMGT_2008_28_2_a8
ER  - 
%0 Journal Article
%A Bonato, Anthony
%A Wang, Changping
%T A note on domination parameters in random graphs
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 335-343
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a8/
%G en
%F DMGT_2008_28_2_a8
Bonato, Anthony; Wang, Changping. A note on domination parameters in random graphs. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 335-343. http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a8/

[1] N. Alon and J. Spencer, The Probabilistic Method (Wiley, New York, 2000).

[2] P.A. Dreyer, Applications and variations of domination in graphs, Ph.D. Dissertation, Department of Mathematics (Rutgers University, 2000).

[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds.), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).

[5] S. Janson, T. Łuczak and A. Ruciński, Random Graphs (John Wiley and Sons, New York, 2000), doi: 10.1002/9781118032718.

[6] C. Kaiser and K. Weber, Degrees and domination number of random graphs in the n-cube, Rostock. Math. Kolloq. 28 (1985) 18-32.

[7] K. Weber, Domination number for almost every graph, Rostock. Math. Kolloq. 16 (1981) 31-43.

[8] B. Wieland and A.P. Godbole, On the domination number of a random graph, The Electronic Journal of Combinatorics 8 (2001) #R37.

[9] I.E. Zverovich and V.E. Zverovich, The domination parameters of cubic graphs, Graphs and Combinatorics 21 (2005) 277-288, doi: 10.1007/s00373-005-0608-1.