Clique irreducibility of some iterative classes of graphs
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 307-321
Cet article a éte moissonné depuis la source Library of Science
In this paper, two notions, the clique irreducibility and clique vertex irreducibility are discussed. A graph G is clique irreducible if every clique in G of size at least two, has an edge which does not lie in any other clique of G and it is clique vertex irreducible if every clique in G has a vertex which does not lie in any other clique of G. It is proved that L(G) is clique irreducible if and only if every triangle in G has a vertex of degree two. The conditions for the iterations of line graph, the Gallai graphs, the anti-Gallai graphs and its iterations to be clique irreducible and clique vertex irreducible are also obtained.
Keywords:
line graphs, Gallai graphs, anti-Gallai graphs, clique irreducible graphs, clique vertex irreducible graphs
@article{DMGT_2008_28_2_a6,
author = {Aparna Lakshmanan, S. and Vijayakumar, A.},
title = {Clique irreducibility of some iterative classes of graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {307--321},
year = {2008},
volume = {28},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a6/}
}
TY - JOUR AU - Aparna Lakshmanan, S. AU - Vijayakumar, A. TI - Clique irreducibility of some iterative classes of graphs JO - Discussiones Mathematicae. Graph Theory PY - 2008 SP - 307 EP - 321 VL - 28 IS - 2 UR - http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a6/ LA - en ID - DMGT_2008_28_2_a6 ER -
Aparna Lakshmanan, S.; Vijayakumar, A. Clique irreducibility of some iterative classes of graphs. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 307-321. http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a6/
[1] Aparna Lakshmanan S., S.B. Rao and A. Vijayakumar, Gallai and anti-Gallai graphs of a graph, Math. Bohem. 132 (2007) 43-54.
[2] R. Balakrishnan and K. Ranganathan, A Text Book of Graph Theory (Springer, 1999).
[3] L. Chong-Keang and P. Yee-Hock, On graphs without multicliqual edges, J. Graph Theory 5 (1981) 443-451, doi: 10.1002/jgt.3190050416.
[4] V.B. Le, Gallai graphs and anti-Gallai graphs, Discrete Math. 159 (1996) 179-189, doi: 10.1016/0012-365X(95)00109-A.
[5] E. Prisner, Graph Dynamics (Longman, 1995).
[6] E. Prisner, Hereditary clique-Helly graphs, J. Combin. Math. Combin. Comput. 14 (1993) 216-220.
[7] W.D. Wallis and G.H. Zhang, On maximal clique irreducible graphs, J. Combin. Math. Combin. Comput. 8 (1990) 187-193.