Clique irreducibility of some iterative classes of graphs
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 307-321.

Voir la notice de l'article provenant de la source Library of Science

In this paper, two notions, the clique irreducibility and clique vertex irreducibility are discussed. A graph G is clique irreducible if every clique in G of size at least two, has an edge which does not lie in any other clique of G and it is clique vertex irreducible if every clique in G has a vertex which does not lie in any other clique of G. It is proved that L(G) is clique irreducible if and only if every triangle in G has a vertex of degree two. The conditions for the iterations of line graph, the Gallai graphs, the anti-Gallai graphs and its iterations to be clique irreducible and clique vertex irreducible are also obtained.
Keywords: line graphs, Gallai graphs, anti-Gallai graphs, clique irreducible graphs, clique vertex irreducible graphs
@article{DMGT_2008_28_2_a6,
     author = {Aparna Lakshmanan, S. and Vijayakumar, A.},
     title = {Clique irreducibility of some iterative classes of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {307--321},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a6/}
}
TY  - JOUR
AU  - Aparna Lakshmanan, S.
AU  - Vijayakumar, A.
TI  - Clique irreducibility of some iterative classes of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 307
EP  - 321
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a6/
LA  - en
ID  - DMGT_2008_28_2_a6
ER  - 
%0 Journal Article
%A Aparna Lakshmanan, S.
%A Vijayakumar, A.
%T Clique irreducibility of some iterative classes of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 307-321
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a6/
%G en
%F DMGT_2008_28_2_a6
Aparna Lakshmanan, S.; Vijayakumar, A. Clique irreducibility of some iterative classes of graphs. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 307-321. http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a6/

[1] Aparna Lakshmanan S., S.B. Rao and A. Vijayakumar, Gallai and anti-Gallai graphs of a graph, Math. Bohem. 132 (2007) 43-54.

[2] R. Balakrishnan and K. Ranganathan, A Text Book of Graph Theory (Springer, 1999).

[3] L. Chong-Keang and P. Yee-Hock, On graphs without multicliqual edges, J. Graph Theory 5 (1981) 443-451, doi: 10.1002/jgt.3190050416.

[4] V.B. Le, Gallai graphs and anti-Gallai graphs, Discrete Math. 159 (1996) 179-189, doi: 10.1016/0012-365X(95)00109-A.

[5] E. Prisner, Graph Dynamics (Longman, 1995).

[6] E. Prisner, Hereditary clique-Helly graphs, J. Combin. Math. Combin. Comput. 14 (1993) 216-220.

[7] W.D. Wallis and G.H. Zhang, On maximal clique irreducible graphs, J. Combin. Math. Combin. Comput. 8 (1990) 187-193.