Solution to the problem of Kubesa
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 375-378.

Voir la notice de l'article provenant de la source Library of Science

An infinite family of T-factorizations of complete graphs K_2n, where 2n = 56k and k is a positive integer, in which the set of vertices of T can be split into two subsets of the same cardinality such that degree sums of vertices in both subsets are not equal, is presented. The existence of such T-factorizations provides a negative answer to the problem posed by Kubesa.
Keywords: tree, T-factorization, degree sequence
@article{DMGT_2008_28_2_a12,
     author = {Meszka, Mariusz},
     title = {Solution to the problem of {Kubesa}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {375--378},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a12/}
}
TY  - JOUR
AU  - Meszka, Mariusz
TI  - Solution to the problem of Kubesa
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 375
EP  - 378
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a12/
LA  - en
ID  - DMGT_2008_28_2_a12
ER  - 
%0 Journal Article
%A Meszka, Mariusz
%T Solution to the problem of Kubesa
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 375-378
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a12/
%G en
%F DMGT_2008_28_2_a12
Meszka, Mariusz. Solution to the problem of Kubesa. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 375-378. http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a12/

[1] D. Froncek and T. Kovarova, Personal communication, 2004-6.

[2] D. Froncek and M. Kubesa, Problem presented at the Workshop in Krynica 2004, Discuss. Math. Graph Theory 26 (2006) 351.

[3] N.D. Tan, On a problem of Froncek and Kubesa, Australas. J. Combin. 40 (2008) 237-246.