A remark on the (2,2)-domination number
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 361-366
Voir la notice de l'article provenant de la source Library of Science
A subset D of the vertex set of a graph G is a (k,p)-dominating set if every vertex v ∈ V(G)∖D is within distance k to at least p vertices in D. The parameter γ_k,p(G) denotes the minimum cardinality of a (k,p)-dominating set of G. In 1994, Bean, Henning and Swart posed the conjecture that γ_k,p(G) ≤ (p/(p+k))n(G) for any graph G with δₖ(G) ≥ k+p-1, where the latter means that every vertex is within distance k to at least k+p-1 vertices other than itself. In 2005, Fischermann and Volkmann confirmed this conjecture for all integers k and p for the case that p is a multiple of k. In this paper we show that γ_2,2(G) ≤ (n(G)+1)/2 for all connected graphs G and characterize all connected graphs with γ_2,2 = (n+1)/2. This means that for k = p = 2 we characterize all connected graphs for which the conjecture is true without the precondition that δ₂ ≥ 3.
Keywords:
domination, distance domination number, p-domination number
@article{DMGT_2008_28_2_a10,
author = {Korneffel, Torsten and Meierling, Dirk and Volkmann, Lutz},
title = {A remark on the (2,2)-domination number},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {361--366},
publisher = {mathdoc},
volume = {28},
number = {2},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a10/}
}
TY - JOUR AU - Korneffel, Torsten AU - Meierling, Dirk AU - Volkmann, Lutz TI - A remark on the (2,2)-domination number JO - Discussiones Mathematicae. Graph Theory PY - 2008 SP - 361 EP - 366 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a10/ LA - en ID - DMGT_2008_28_2_a10 ER -
Korneffel, Torsten; Meierling, Dirk; Volkmann, Lutz. A remark on the (2,2)-domination number. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 361-366. http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a10/