The Wiener number of Kneser graphs
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 219-228

Voir la notice de l'article provenant de la source Library of Science

The Wiener number of a graph G is defined as 1/2∑d(u,v), where u,v ∈ V(G), and d is the distance function on G. The Wiener number has important applications in chemistry. We determine the Wiener number of an important family of graphs, namely, the Kneser graphs.
Keywords: Wiener number, Kneser graph, odd graph
@article{DMGT_2008_28_2_a1,
     author = {Balakrishnan, Rangaswami and Raj, S.},
     title = {The {Wiener} number of {Kneser} graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {219--228},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a1/}
}
TY  - JOUR
AU  - Balakrishnan, Rangaswami
AU  - Raj, S.
TI  - The Wiener number of Kneser graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 219
EP  - 228
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a1/
LA  - en
ID  - DMGT_2008_28_2_a1
ER  - 
%0 Journal Article
%A Balakrishnan, Rangaswami
%A Raj, S.
%T The Wiener number of Kneser graphs
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 219-228
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a1/
%G en
%F DMGT_2008_28_2_a1
Balakrishnan, Rangaswami; Raj, S. The Wiener number of Kneser graphs. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 219-228. http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a1/