(H,k) stable graphs with minimum size
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 137-149
Cet article a éte moissonné depuis la source Library of Science
Let us call a G (H,k) graph vertex stable if it contains a subgraph H ever after removing any of its k vertices. By Q(H,k) we will denote the minimum size of an (H,k) vertex stable graph. In this paper, we are interested in finding Q(₃,k), Q(₄,k), Q(K_1,p,k) and Q(Kₛ,k).
Keywords:
graph, stable graph
@article{DMGT_2008_28_1_a9,
author = {Dudek, Aneta and Szyma\'nski, Artur and Zwonek, Ma{\l}gorzata},
title = {(H,k) stable graphs with minimum size},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {137--149},
year = {2008},
volume = {28},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a9/}
}
Dudek, Aneta; Szymański, Artur; Zwonek, Małgorzata. (H,k) stable graphs with minimum size. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 137-149. http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a9/
[1] P. Frankl and G.Y. Katona, Extremal k-edge-hamiltonian hypergraphs, accepted for publication in Discrete Math.
[2] I. Horváth and G.Y. Katona, Extremal stable graphs, manuscript.
[3] R. Greenlaw and R. Petreschi, Cubic Graphs, ACM Computing Surveys, No. 4, (1995).