Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2008_28_1_a4, author = {Tan, Ngo and Iamjaroen, Chawalit}, title = {A classification for maximal nonhamiltonian {Burkard-Hammer} graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {67--89}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a4/} }
TY - JOUR AU - Tan, Ngo AU - Iamjaroen, Chawalit TI - A classification for maximal nonhamiltonian Burkard-Hammer graphs JO - Discussiones Mathematicae. Graph Theory PY - 2008 SP - 67 EP - 89 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a4/ LA - en ID - DMGT_2008_28_1_a4 ER -
Tan, Ngo; Iamjaroen, Chawalit. A classification for maximal nonhamiltonian Burkard-Hammer graphs. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 67-89. http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a4/
[1] M. Behzad and G. Chartrand, Introduction to the theory of graphs (Allyn and Bacon, Boston, 1971).
[2] R.E. Burkard and P.L. Hammer, A note on hamiltonian split graphs, J. Combin. Theory (B) 28 (1980) 245-248, doi: 10.1016/0095-8956(80)90069-6.
[3] V. Chvátal and P.L. Hammer, Aggregation of inequalities in integer programming, Ann. Discrete Math. 1 (1977) 145-162, doi: 10.1016/S0167-5060(08)70731-3.
[4] S. Földes and P.L. Hammer, Split graphs, in: Proceedings of the Eighth Southeastern Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La, 1977) pp. 311-315. Congr. Numer., No. XIX, Utilitas Math., Winnipeg, Man. 1977.
[5] S. Földes and P.L. Hammer, On a class of matroid-producing graphs, in: Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely 1976) Vol. 1, 331-352, Colloq. Math. Soc. Janós Bolyai 18 (North-Holland, Amsterdam-New York, 1978).
[6] P.B. Henderson and Y. Zalcstein, A graph-theoretic characterization of the PV_{chunk} class of synchronizing primitive, SIAM J. Computing 6 (1977) 88-108, doi: 10.1137/0206008.
[7] A.H. Hesham and El.R. Hesham, Task allocation in distributed systems: a split graph model, J. Combin. Math. Combin. Comput. 14 (1993) 15-32.
[8] D. Kratsch, J. Lehel and H. Müller, Toughness, hamiltonicity and split graphs, Discrete Math. 150 (1996) 231-245, doi: 10.1016/0012-365X(95)00190-8.
[9] J. Peemöller, Necessary conditions for hamiltonian split graphs, Discrete Math. 54 (1985) 39-47.
[10] U.N. Peled, Regular Boolean functions and their polytope, Chap VI, Ph. D. Thesis (Univ. of Waterloo, Dept. Combin. and Optimization, 1975).
[11] Ngo Dac Tan and Le Xuan Hung, Hamilton cycles in split graphs with large minimum degree, Discuss. Math. Graph Theory 24 (2004) 23-40, doi: 10.7151/dmgt.1210.
[12] Ngo Dac Tan and Le Xuan Hung, On the Burkard-Hammer condition for hamiltonian split graphs, Discrete Math. 296 (2005) 59-72, doi: 10.1016/j.disc.2005.03.008.
[13] Ngo Dac Tan and C. Iamjaroen, Constructions for nonhamiltonian Burkard-Hammer graphs, in: Combinatorial Geometry and Graph Theory (Proc. of Indonesia-Japan Joint Conf., September 13-16, 2003, Bandung, Indonesia) 185-199, Lecture Notes in Computer Science 3330 (Springer, Berlin Heidelberg, 2005).
[14] Ngo Dac Tan and C. Iamjaroen, A necessary condition for maximal nonhamiltonian Burkard-Hammer graphs, J. Discrete Math. Sciences Cryptography 9 (2006) 235-252.