Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2008_28_1_a1, author = {Sonntag, Martin and Teichert, Hanns-Martin}, title = {Competition hypergraphs of digraphs with certain properties {II.} {Hamiltonicity}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {23--34}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a1/} }
TY - JOUR AU - Sonntag, Martin AU - Teichert, Hanns-Martin TI - Competition hypergraphs of digraphs with certain properties II. Hamiltonicity JO - Discussiones Mathematicae. Graph Theory PY - 2008 SP - 23 EP - 34 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a1/ LA - en ID - DMGT_2008_28_1_a1 ER -
%0 Journal Article %A Sonntag, Martin %A Teichert, Hanns-Martin %T Competition hypergraphs of digraphs with certain properties II. Hamiltonicity %J Discussiones Mathematicae. Graph Theory %D 2008 %P 23-34 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a1/ %G en %F DMGT_2008_28_1_a1
Sonntag, Martin; Teichert, Hanns-Martin. Competition hypergraphs of digraphs with certain properties II. Hamiltonicity. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 23-34. http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a1/
[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer, London, 2001).
[2] J.E. Cohen, Interval graphs and food webs: a finding and a problem (Rand Corporation Document 17696-PR, Santa Monica, CA, 1968).
[3] R.D. Dutton and R.C. Brigham, A characterization of competition graphs, Discrete Appl. Math. 6 (1983) 315-317, doi: 10.1016/0166-218X(83)90085-9.
[4] K.F. Fraughnaugh, J.R. Lundgren, S.K. Merz, J.S. Maybee and N.J. Pullman, Competition graphs of strongly connected and hamiltonian digraphs, SIAM J. Discrete Math. 8 (1995) 179-185, doi: 10.1137/S0895480191197234.
[5] H.J. Greenberg, J.R. Lundgren and J.S. Maybee, Inverting graphs of rectangular matrices, Discrete Appl. Math. 8 (1984) 255-265, doi: 10.1016/0166-218X(84)90123-9.
[6] D.R. Guichard, Competition graphs of hamiltonian digraphs, SIAM J. Discrete Math. 11 (1998) 128-134, doi: 10.1137/S089548019629735X.
[7] P. Hall, On representation of subsets, J. London Math. Soc. 10 (1935) 26-30, doi: 10.1112/jlms/s1-10.37.26.
[8] S.R. Kim, The competition number and its variants, in: J. Gimbel, J.W. Kennedy and L.V. Quintas (eds.), Quo vadis, graph theory?, Ann. of Discrete Math. 55 (1993) 313-326.
[9] J.R. Lundgren, Food webs, competition graphs, competition-common enemy graphs and niche graphs, in: F. Roberts (ed.), Applications of combinatorics and graph theory to the biological and social sciences, IMA 17 (Springer, New York, 1989) 221-243.
[10] J.R. Lundgren and J.S. Maybee, A characterization of graphs of competition number m, Discrete Appl. Math. 6 (1983) 319-322, doi: 10.1016/0166-218X(83)90086-0.
[11] F.S. Roberts, Competition graphs and phylogeny graphs, in: L. Lovasz (ed.), Graph theory and combinatorial biology; Proc. Int. Colloqu. Balatonlelle (Hungary) 1996, Bolyai Soc. Math. Studies 7 (Budapest, 1999) 333-362.
[12] F.S. Roberts and J.E. Steif, A characterization of competition graphs of arbitrary digraphs, Discrete Appl. Math. 6 (1983) 323-326, doi: 10.1016/0166-218X(83)90087-2.
[13] M. Sonntag and H.-M. Teichert, Competition hypergraphs, Discrete Appl. Math. 143 (2004) 324-329, doi: 10.1016/j.dam.2004.02.010.