Competition hypergraphs of digraphs with certain properties II. Hamiltonicity
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 23-34.

Voir la notice de l'article provenant de la source Library of Science

If D = (V,A) is a digraph, its competition hypergraph (D) has vertex set V and e ⊆ V is an edge of (D) iff |e| ≥ 2 and there is a vertex v ∈ V, such that e = N_D⁻(v) = w ∈ V|(w,v) ∈ A. We give characterizations of (D) in case of hamiltonian digraphs D and, more general, of digraphs D having a τ-cycle factor. The results are closely related to the corresponding investigations for competition graphs in Fraughnaugh et al. [4] and Guichard [6].
Keywords: hypergraph, competition graph, hamiltonian digraph
@article{DMGT_2008_28_1_a1,
     author = {Sonntag, Martin and Teichert, Hanns-Martin},
     title = {Competition hypergraphs of digraphs with certain properties {II.} {Hamiltonicity}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {23--34},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a1/}
}
TY  - JOUR
AU  - Sonntag, Martin
AU  - Teichert, Hanns-Martin
TI  - Competition hypergraphs of digraphs with certain properties II. Hamiltonicity
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 23
EP  - 34
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a1/
LA  - en
ID  - DMGT_2008_28_1_a1
ER  - 
%0 Journal Article
%A Sonntag, Martin
%A Teichert, Hanns-Martin
%T Competition hypergraphs of digraphs with certain properties II. Hamiltonicity
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 23-34
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a1/
%G en
%F DMGT_2008_28_1_a1
Sonntag, Martin; Teichert, Hanns-Martin. Competition hypergraphs of digraphs with certain properties II. Hamiltonicity. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 23-34. http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a1/

[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer, London, 2001).

[2] J.E. Cohen, Interval graphs and food webs: a finding and a problem (Rand Corporation Document 17696-PR, Santa Monica, CA, 1968).

[3] R.D. Dutton and R.C. Brigham, A characterization of competition graphs, Discrete Appl. Math. 6 (1983) 315-317, doi: 10.1016/0166-218X(83)90085-9.

[4] K.F. Fraughnaugh, J.R. Lundgren, S.K. Merz, J.S. Maybee and N.J. Pullman, Competition graphs of strongly connected and hamiltonian digraphs, SIAM J. Discrete Math. 8 (1995) 179-185, doi: 10.1137/S0895480191197234.

[5] H.J. Greenberg, J.R. Lundgren and J.S. Maybee, Inverting graphs of rectangular matrices, Discrete Appl. Math. 8 (1984) 255-265, doi: 10.1016/0166-218X(84)90123-9.

[6] D.R. Guichard, Competition graphs of hamiltonian digraphs, SIAM J. Discrete Math. 11 (1998) 128-134, doi: 10.1137/S089548019629735X.

[7] P. Hall, On representation of subsets, J. London Math. Soc. 10 (1935) 26-30, doi: 10.1112/jlms/s1-10.37.26.

[8] S.R. Kim, The competition number and its variants, in: J. Gimbel, J.W. Kennedy and L.V. Quintas (eds.), Quo vadis, graph theory?, Ann. of Discrete Math. 55 (1993) 313-326.

[9] J.R. Lundgren, Food webs, competition graphs, competition-common enemy graphs and niche graphs, in: F. Roberts (ed.), Applications of combinatorics and graph theory to the biological and social sciences, IMA 17 (Springer, New York, 1989) 221-243.

[10] J.R. Lundgren and J.S. Maybee, A characterization of graphs of competition number m, Discrete Appl. Math. 6 (1983) 319-322, doi: 10.1016/0166-218X(83)90086-0.

[11] F.S. Roberts, Competition graphs and phylogeny graphs, in: L. Lovasz (ed.), Graph theory and combinatorial biology; Proc. Int. Colloqu. Balatonlelle (Hungary) 1996, Bolyai Soc. Math. Studies 7 (Budapest, 1999) 333-362.

[12] F.S. Roberts and J.E. Steif, A characterization of competition graphs of arbitrary digraphs, Discrete Appl. Math. 6 (1983) 323-326, doi: 10.1016/0166-218X(83)90087-2.

[13] M. Sonntag and H.-M. Teichert, Competition hypergraphs, Discrete Appl. Math. 143 (2004) 324-329, doi: 10.1016/j.dam.2004.02.010.