Competition hypergraphs of digraphs with certain properties I. Strong connectedness
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 5-21.

Voir la notice de l'article provenant de la source Library of Science

If D = (V,A) is a digraph, its competition hypergraph (D) has the vertex set V and e ⊆ V is an edge of (D) iff |e| ≥ 2 and there is a vertex v ∈ V, such that e = w ∈ V|(w,v) ∈ A. We tackle the problem to minimize the number of strong components in D without changing the competition hypergraph (D). The results are closely related to the corresponding investigations for competition graphs in Fraughnaugh et al. [3].
Keywords: hypergraph, competition graph, strong component
@article{DMGT_2008_28_1_a0,
     author = {Sonntag, Martin and Teichert, Hanns-Martin},
     title = {Competition hypergraphs of digraphs with certain properties {I.} {Strong} connectedness},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {5--21},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a0/}
}
TY  - JOUR
AU  - Sonntag, Martin
AU  - Teichert, Hanns-Martin
TI  - Competition hypergraphs of digraphs with certain properties I. Strong connectedness
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 5
EP  - 21
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a0/
LA  - en
ID  - DMGT_2008_28_1_a0
ER  - 
%0 Journal Article
%A Sonntag, Martin
%A Teichert, Hanns-Martin
%T Competition hypergraphs of digraphs with certain properties I. Strong connectedness
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 5-21
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a0/
%G en
%F DMGT_2008_28_1_a0
Sonntag, Martin; Teichert, Hanns-Martin. Competition hypergraphs of digraphs with certain properties I. Strong connectedness. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 5-21. http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a0/

[1] J. Bang-Jensen and G. Gutin, Digraphs: theory, algorithms and applications (Springer, London, 2001).

[2] J.E. Cohen, Interval graphs and food webs: a finding and a problem (Rand Corporation Document 17696-PR, Santa Monica, CA, 1968).

[3] K.F. Fraughnaugh, J.R. Lundgren, S.K. Merz, J.S. Maybee and N.J. Pullman, Competition graphs of strongly connected and hamiltonian digraphs, SIAM J. Discrete Math. 8 (1995) 179-185, doi: 10.1137/S0895480191197234.

[4] S.R. Kim, The competition number and its variants, in: J. Gimbel, J.W. Kennedy and L.V. Quintas (eds.), Quo vadis, graph theory?, Ann. of Discrete Math. 55 (1993) 313-326.

[5] J.R. Lundgren, Food webs, competition graphs, competition-common enemy graphs and niche graphs, in: F. Roberts (ed.), Applications of combinatorics and graph theory to the biological and social sciences, IMA 17 (Springer, New York, 1989) 221-243.

[6] F.S. Roberts, Competition graphs and phylogeny graphs, in: L. Lovasz (ed.), Graph theory and combinatorial biology; Proc. Int. Colloqu. Balatonlelle (Hungary) 1996, Bolyai Soc. Math. Studies 7 (Budapest, 1999) 333-362.

[7] F.S. Roberts amd J.E. Steif, A characterization of competition graphs of arbitrary digraphs, Discrete Appl. Math. 6 (1983) 323-326, doi: 10.1016/0166-218X(83)90087-2.

[8] M. Sonntag, H.-M. Teichert, Competition hypergraphs, Discrete Appl. Math. 143 (2004) 324-329, doi: 10.1016/j.dam.2004.02.010.