Counterexample to a conjecture on the structure of bipartite partitionable graphs
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 3, pp. 527-540.

Voir la notice de l'article provenant de la source Library of Science

A graph G is called a prism fixer if γ(G×K₂) = γ(G), where γ(G) denotes the domination number of G. A symmetric γ-set of G is a minimum dominating set D which admits a partition D = D₁∪ D₂ such that V(G)-N[D_i] = D_j, i,j = 1,2, i ≠ j. It is known that G is a prism fixer if and only if G has a symmetric γ-set.
Keywords: domination, prism fixer, symmetric dominating set, bipartite graph
@article{DMGT_2007_27_3_a8,
     author = {Gibson, Richard and Mynhardt, Christina},
     title = {Counterexample to a conjecture on the structure of bipartite partitionable graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {527--540},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a8/}
}
TY  - JOUR
AU  - Gibson, Richard
AU  - Mynhardt, Christina
TI  - Counterexample to a conjecture on the structure of bipartite partitionable graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 527
EP  - 540
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a8/
LA  - en
ID  - DMGT_2007_27_3_a8
ER  - 
%0 Journal Article
%A Gibson, Richard
%A Mynhardt, Christina
%T Counterexample to a conjecture on the structure of bipartite partitionable graphs
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 527-540
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a8/
%G en
%F DMGT_2007_27_3_a8
Gibson, Richard; Mynhardt, Christina. Counterexample to a conjecture on the structure of bipartite partitionable graphs. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 3, pp. 527-540. http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a8/

[1] D.W. Bange, A.E. Barkauskas and P.J. Slater, Efficient dominating sets in graphs, in: R.D. Ringeisen and F.S. Roberts, eds, Applications of Discrete Mathematics 189-199 (SIAM, Philadelphia, PA, 1988).

[2] A.P. Burger, C.M. Mynhardt and W.D. Weakley, On the domination number of prisms of graphs, Discuss. Math. Graph Theory 24 (2004) 303-318, doi: 10.7151/dmgt.1233.

[3] G. Chartrand and L. Leśniak, Graphs and Digraphs, Third Edition (Chapman Hall, London, 1996).

[4] B.L. Hartnell and D.F. Rall, On Vizing's conjecture, Congr. Numer. 82 (1991) 87-96.

[5] B.L. Hartnell and D.F. Rall, On dominating the Cartesian product of a graph and K₂, Discuss. Math. Graph Theory 24 (2004) 389-402, doi: 10.7151/dmgt.1238.

[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[7] C.M. Mynhardt and Zhixia Xu, Domination in prisms of graphs: Universal fixers, Utilitas Math., to appear.

[8] P.R.J. Östergå rd and W.D. Weakley, Classification of binary covering codes, J. Combin. Des. 8 (2000) 391-401, doi: 10.1002/1520-6610(2000)8:6391::AID-JCD1>3.0.CO;2-R

[9] M. Schurch, Domination Parameters for Prisms of Graphs (Master's thesis, University of Victoria, 2005).

[10] C.B. Smart and P.J. Slater, Complexity results for closed neighborhood order parameters, Congr. Numer. 112 (1995) 83-96.

[11] V.G. Vizing, Some unsolved problems in graph theory, Uspehi Mat. Nauk 23 (1968) 117-134.