Counterexample to a conjecture on the structure of bipartite partitionable graphs
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 3, pp. 527-540

Voir la notice de l'article provenant de la source Library of Science

A graph G is called a prism fixer if γ(G×K₂) = γ(G), where γ(G) denotes the domination number of G. A symmetric γ-set of G is a minimum dominating set D which admits a partition D = D₁∪ D₂ such that V(G)-N[D_i] = D_j, i,j = 1,2, i ≠ j. It is known that G is a prism fixer if and only if G has a symmetric γ-set.
Keywords: domination, prism fixer, symmetric dominating set, bipartite graph
@article{DMGT_2007_27_3_a8,
     author = {Gibson, Richard and Mynhardt, Christina},
     title = {Counterexample to a conjecture on the structure of bipartite partitionable graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {527--540},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a8/}
}
TY  - JOUR
AU  - Gibson, Richard
AU  - Mynhardt, Christina
TI  - Counterexample to a conjecture on the structure of bipartite partitionable graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 527
EP  - 540
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a8/
LA  - en
ID  - DMGT_2007_27_3_a8
ER  - 
%0 Journal Article
%A Gibson, Richard
%A Mynhardt, Christina
%T Counterexample to a conjecture on the structure of bipartite partitionable graphs
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 527-540
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a8/
%G en
%F DMGT_2007_27_3_a8
Gibson, Richard; Mynhardt, Christina. Counterexample to a conjecture on the structure of bipartite partitionable graphs. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 3, pp. 527-540. http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a8/